
PHYSICS 827

Home Work Assignment # 8 (final version) 10/22/2010

Due: Fri., Dec. 3, 2010 (in class).

1. In this problem we look at Rabi Oscillations in a simple context. These
are very important in atomic, molecular and optical physics and in the field
of quantum information.
(a) Argue that the most general two-level system Hamiltonian must be of
the form:

H =

(
E0 + ε ∆

∆∗ E0 − ε

)
where E0 is the average energy in the two states, ε determines the “asym-
metry” and ∆ is the (complex) “tunneling amplitude” or “coupling”.

(b) Show that the energy eigenvalues are

E± = E0 ±
√
ε2 + |∆|2

and plot E+ and E− as functions of |∆| on the same graph and mark various
energy scales.
(c) Show that the corresponding eigenvectors are

|ψ+〉 = cos(θ/2)e−iφ/2|ψ1〉+ sin(θ/2)e+iφ/2|ψ2〉

|ψ−〉 = − sin(θ/2)e−iφ/2|ψ1〉+ cos(θ/2)e+iφ/2|ψ2〉

where

|ψ1〉 =

(
1
0

)
and |ψ2〉 =

(
0
1

)
is the basis in which H is written, and the angles θ ∈ [0, π) and φ are defined
by

tan θ = |∆|/ε and ∆ = |∆|e+iφ

[You could use the Pauli matrices introduced in HW # 4 to solve this prob-
lem, but that is not essential.]
(d) Let the initial state of the system be |ψ(0)〉 = |ψ1〉. Find the probability
P12(t) for the system to be found in state |ψ2〉 at a time t.
Make a careful sketch of P12(t), marking relevant time scales and maximum
and minimum values of P12.
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2. In this problem we will look at a highly oversimplified caricature of the
Solar neutrino puzzle. Very reliable models predict that essentially all
the neutrinos produced in the interior of the sun are electron neutrinos νe
via the process

p+ p→ 2H + e+ + νe.

Further, the model makes a definite prediction for the flux of solar νe’s in-
cident upon the earth. Several decades of careful experiments concluded
that the measured flux is only about one-half that expected from the solar
model. The widely accepted explanation of this deficit is that solar models
are correct, but the electron neutrinos transform into other types of neutri-
nos as they move from the interior of the sun to the earth. To illustrate this
qualitatively, let us look at a simple theory that assumes that:
(i) there are only two types of neutrinos, the electron neutrino νe and the
muon neutrino νµ. (This ignores the tau neutrino ντ )
(ii) and that the entire phenomenon takes place in the vacuum between the
sun and earth. (This ignores propagation inside the sun).
It had long been thought that neutrinos are massless. But, if they are not,
then we can work in the rest frame of the neutrinos and write down the
Hamiltonian in the {νe, νµ} basis:

|νe〉 =

(
1
0

)
, |νµ〉 =

(
0
1

)
, H =

(
mec

2 mc2

mc2 mµc
2

)
.

Here me and mµ are neutrino masses and the off-diagonal element m makes
possible the transitions from one type of neutrino to another.

(1) Show that the mass eigenstates are

|ν1〉 = cos(θ/2)|νe〉+ sin(θ/2)|νµ〉

|ν2〉 = − sin(θ/2)|νe〉+ cos(θ/2)|νµ〉

with tan θ = 2m/(me −mµ) and that the masses are

m1,2 =
me +mµ

2
±

√
m2 +

(
me −mµ

2

)2

(2) If the state of the neutrino at time t = 0 in the sun is |ψ(t)〉 = |νe〉,
find is the probability of observing an electron neutrino a time t later on the
earth. This is the phenomenon of neutrino oscillation.
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3. This problem uses the Pauli matrices σx, σy and σz and other ideas
introduced in Problem 7 of HW 4. Please review the solution of that problem
in detail before working on this one, and feel free to use those results.
Consider a spin-1/2 particle with a magnetic moment

M = γ S, where S =
h̄

2
(σx, σy, σz)

where γ is the gyromagnetic ratio. The Hamiltonian for this system in an
external magnetic field B is given by

H = −M ·B.

Consider a uniform field that points in the (θ, φ)-direction, i.e.,

B = B n̂ ≡ B (sin θ cosφ, sin θ sinφ, cos θ) .

(a) Find the state of the system |ψ(t)〉, given that it starts out in the state
|ψ(0)〉 = |+〉 in which the eigenvalue of Sz is +h̄/2.

(b) At time t we measure the observable Sz. What possible values can we
find and with what probabilities?

4. In this problem you will learn about coherent states of the quantum
harmonic oscillator and explore some of their properties. These states are of
great importance in quantum optics, lasers and in many areas of condensed
matter physics. A coherent state is defined by

|z〉 = Cz

∞∑
n=0

zn√
n!
|n〉,

where z is any complex number, and |n〉 is the eigenstate of the number
operator N = a†a with eigenvalue n, and Cz is a normalization constant
that you will determine below.

(a) Show that |z〉 is a (right) eigenstate, i.e., an eigenket, of the destruction
operator a and find the corresponding eigenvalue.

(b) Show that the normalization is Cz = exp
(
−|z|2/2

)
(c) Can you find a (right) eigenstate, or eigenket, of the creation operator
a†? If so, find it. If not, explain why not.

(d) Find 〈z|w〉 for complex z and w. Are the coherent states orthogonal?
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(e) Show that the set of all coherent states {|z〉} is complete basis set by
demonstrating the resolution of the identity:

1

π

∫
d2z|z〉〈z| = 1̂.

where d2z = dx dy with z = x+ iy.

[If you are looking for a challenge (that is optional and will not be graded):
Show that the set of all coherent states is overcomplete, i.e., not all |z〉 are
linearly independent.]

(f) Find the mean number 〈z|N |z〉 and the fluctuation 〈z|N2|z〉.

(g) Calculate 〈z0|X|z0〉, 〈z0|P |z0〉 where z0 = x0+iy0. Find the uncertainties
δX and δP in the coherent state |z0〉. What is the product (δX)(δP )?

(h) Find the time evolution of a coherent state: |ψz(t)〉 = exp (−iHt/h̄) |ψz(0)〉,
whereH is the harmonic oscillator Hamiltonian, and the initial state |ψz(0)〉 =
|z0〉 is a coherent state with z0 = ρ0 exp(iθ0).
Show that |ψz(t)〉 is also a coherent state but with a time-dependent “z”.

(i) Find the time evolution of the expectation values of
〈X〉(t) = 〈ψz(t)|X|ψz(t)〉, 〈P 〉(t) and 〈H〉(t). Compare your results with
that for a classical harmonic oscillator.

5. This problem builds on an example that we discussed in class. Consider
the motion on a quantum particle of mass m in a one-dimensional square
well: V (x) = 0 for 0 < x < a and infinite elsewhere. Denote by En and |φn〉
the energy eigenvalues and eigenfunctions (n = 1, 2, . . .).
Let the initial state of the particle be

|ψ(0)〉 =
1√
2

(|φ1〉+ |φ2〉)

We discussed ψ(x, t) ≡ 〈x|ψ(t)〉 in class.

(a) Show that the mean position of the wave packet is

〈X〉(t) =
a

2
− 16a

9π2
cos(ω21t)

where ω21 = (E2 − E1)h̄.
(Hint: You may find it useful to introduce an operator X ′ = X − (a/2)1̂ for
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which many of the matrix elements 〈φ`|X ′|φn〉 can be simply determined by
symmetry.)

(b) Sketch your result for 〈X〉 as a function of time, clearly labeling relevant
scales on the axes. Compare the quantum result with that for a classical
particle moving to and fro in the well with the same frequency. Plot x(t)
for the latter on the same graph and comment.

(c) Find the mean energy 〈H〉, 〈H2〉 and the the root mean squared fluctu-
ation δH. Are these quantities time dependent? Explain.
Find the product (δH)(δt) where δt ' 1/ω21. This is an example of a
“time-energy uncertainty relation” which we will discuss later. Appear-
ances notwithstanding, this uncertainty relation is quite different from the
ones derived in class because, although there is an operator H corresponding
to energy in Q.M., there is no “time” operator!
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