Home Work Assignment \# 1
Due: Fri., Jan. 14, 2011.
Completed assignments should be placed in the grader N. Ramalingam's mail box in PRB by 5:00 PM.

1. In this problem you will learn about coherent states of the quantum harmonic oscillator and explore some of their properties. These states are of great importance in quantum optics, lasers and in many areas of condensed matter physics. A coherent state is defined by

$$
|z\rangle=C_{z} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}}|n\rangle
$$

where z is any complex number, and $|n\rangle$ is the eigenstate of the number operator $N=a^{\dagger} a$ with eigenvalue n, and C_{z} is a normalization constant that you will determine below.
(a) Show that $|z\rangle$ is a (right) eigenstate, i.e., an eigenket, of the destruction operator a and find the corresponding eigenvalue.
(b) Show that the normalization is $C_{z}=\exp \left(-|z|^{2} / 2\right)$
(c) Can you find a (right) eigenstate, or eigenket, of the creation operator a^{\dagger} ? If so, find it. If not, explain why not.
(d) Find $\langle z \mid w\rangle$ for complex z and w. Are the coherent states orthogonal?
(e) Show that the set of all coherent states $\{|z\rangle\}$ is complete basis set by demonstrating the resolution of the identity:

$$
\frac{1}{\pi} \int d^{2} z|z\rangle\langle z|=\widehat{\mathbf{1}}
$$

where $d^{2} z=d x d y$ with $z=x+i y$.
[If you are looking for a challenge (that is optional and will not be graded): Show that the set of all coherent states is overcomplete, i.e., not all $|z\rangle$ are linearly independent.]
(f) Find the mean number $\langle z| N|z\rangle$ and the fluctuation $\langle z| N^{2}|z\rangle$.
(g) Calculate $\left\langle z_{0}\right| X\left|z_{0}\right\rangle,\left\langle z_{0}\right| P\left|z_{0}\right\rangle$ where $z_{0}=x_{0}+i y_{0}$. Find the uncertainties δX and δP in the coherent state $\left|z_{0}\right\rangle$. What is the product $(\delta X)(\delta P)$?
(h) Find the time evolution of a coherent state: $\left|\psi_{z}(t)\right\rangle=\exp (-i H t / \hbar)\left|\psi_{z}(0)\right\rangle$, where H is the harmonic oscillator Hamiltonian, and the initial state $\left|\psi_{z}(0)\right\rangle=$ $\left|z_{0}\right\rangle$ is a coherent state with $z_{0}=\rho_{0} \exp \left(i \theta_{0}\right)$.
Show that $\left|\psi_{z}(t)\right\rangle$ is also a coherent state but with a time-dependent " z ".
(i) Find the time evolution of the expectation values of $\langle X\rangle(t)=\left\langle\psi_{z}(t)\right| X\left|\psi_{z}(t)\right\rangle,\langle P\rangle(t)$ and $\langle H\rangle(t)$. Compare your results with that for a classical harmonic oscillator.
2. Shankar Ex. 10.2.1 (p. 259)
3. Shankar Ex. 10.2.2 (p. 259-260)
4. Shankar Ex. 10.2.3 (p. 260)
5. Consider the states of a system of two spin- $1 / 2$ particles, where we use the notation

$$
\left|\sigma_{1} \sigma_{2}\right\rangle=\left|\sigma_{1}\right\rangle \otimes\left|\sigma_{2}\right\rangle
$$

with each $\sigma_{i}=\uparrow$ or \downarrow. Show that

$$
|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle
$$

is an entangled state, but

$$
|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle
$$

is not entangled.
6. Read Shankar Ex. 10.1 .2 (p. 251-252) to make sure you understand the question and the answer he asks you to prove. You do not need to hand in the solution.

