
PHYSICS 828

Home Work Assignment # 2 1/14/2011

Due: Fri., Jan. 21, 2011.

Completed assignments should be placed in the grader N. Ramalingam’s
mail box in PRB by 5:00 PM.

1. Show that if the Hamiltonian of a system is invariant under space inver-
sion and if the state of the system is non-degenerate, then there can be no
spontaneous electric dipole moment in that state.

Lets break up the proof into several parts. First, lets figure out the conse-
quences of spatial inversion Π for a non-degenerate energy eigenstate.
(1) Show that if |ψ〉 is an eigenstate with energy E, then so is |ψ′〉 = Π|ψ〉.
(2) Then, using non-degeneracy, show that |ψ′〉 = c|ψ〉, where c = ±1.

Next, consider the electric dipole operator for a multi-particle system:

D =
∑
j

qjRj

where qj is the charge and Rj the position operator of the j-th particle.
(Here each operator Rj is a three dimensional vector).
(3) Show that the electric dipole operator has odd parity:

Π† D Π = −D.

A stationary state |ψ〉 is said to have a permanent (or spontaneous) dipole
moment if

〈D〉 = 〈ψ|D|ψ〉 6= 0

in the absence of an external electric field.
(4) We want to show that this is impossible.
Hint: Introduce Π2 = 1 at various places in 〈ψ|D|ψ〉 and use the results of
(1), (2) and (3).

The experimental search for permanent electric dipole moments of various
particles is of great experimental interest, since they can be shown to vanish
under even more general conditions than the one proved above. Should such
moments exist, they would give evidence for subtle effects in high energy
physics.
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2. In this problem you will prove Bloch’s theorem on the form of the sta-
tionary states of a particle in a periodic potential. This result is very useful
in the solid state physics of crystalline lattices.

A crystal is unchanged by a translation through a displacement

Rn = n1a1 + n2a2 + n3a3

where n = (n1, n2, n3) are three integers and a1,a2,a3 form the edges of a
unit cell of the crystal. You can think of a simple cubic crystal where these
are a lattice constant a times the unit vectors along the three axes.
Corresponding to such a translation there is a unitary operator

Û(Rn) = exp
(
−iP̂ ·Rn/h̄

)
,

that leaves the Hamiltonian of the system invariant:

Û(Rn)HÛ−1(Rn) = H.

Here P̂ is the momentum operator. Since the various Û(Rn)’s commute with
each other and with H, we can find a complete set of common eigenvectors
for these operators. (Below I drop the “hats” on the operators).

Our goal is to find the general form of these common eigenvectors

H|ψ〉 = E|ψ〉, U(Rn) = λ(Rn)|ψ〉.

(1) Using U(Rn)U(R`) = U(Rn + R`) show that the eigenvalues must be
of the form

λ(Rn) = exp (−ik ·Rn) .

(2) Show that the vector k must be real.
(3) Show that the coordinate representation of the energy eigenfunction
must satisfy:

ψ(r−Rn) = exp (−ik ·Rn) ψ(r).

Note that this is not a single plane-wave, the solution in the absence of any
potential, but rather a function, labeled by a Bloch wavevector k, that picks
a definite phase factor when translated by a lattice vector Rn.

2



3. Shankar Ex. 11.4.1 (p. 300)

4. Shankar Ex. 11.4.3 (p. 300)

5. Shankar Ex. 11.4.4 (p. 300 - 301)

6. (a) Starting with the operator definition L = R×P, show that

[Lx, Ly] = ih̄Lz

and cyclic permutations.
(b) For L2 = L2

x + L2
y + L2

z, show that[
L2, Lα

]
= 0

for α = x, y, z.

7. Shankar Ex. 12.2.1 (p. 308)

8. Shankar Ex. 12.2.3 (p. 310). You only need to do it in any one of the
two ways suggested in the book.
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