PHYSICS 828

Home Work Assignment \# 3

Due: Fri., Jan. 28, 2011.
Completed assignments should be placed in the grader N. Ramalingam's mail box in PRB by 5:00 PM.

1. Consider the $2 D$ isotropic harmonic oscillator:

$$
H=\frac{1}{2 \mu}\left(P_{x}^{2}+P_{y}^{2}\right)+\frac{1}{2} \mu \omega^{2}\left(X^{2}+Y^{2}\right) .
$$

You have already solved the 2D anisotropic oscillator in Cartesian coordinates in Ex. 10.2.2. Read Shankar Ex. 12.3 .7 (p. 316-317) parts (1) through (10) carefully and understand the differential equation approach outlined in that problem; you do not need to hand in the solution. Instead, you should solve the problem using the following algebraic approach.
(a) Define

$$
a_{x}=\frac{1}{\sqrt{2}}\left(\frac{X}{\ell}+i \frac{\ell P_{x}}{\hbar}\right), \quad a_{y}=\frac{1}{\sqrt{2}}\left(\frac{Y}{\ell}+i \frac{\ell P_{y}}{\hbar}\right)
$$

where the length $\ell=\sqrt{\hbar / \mu \omega}$.
Rewrite H in terms of $a_{x}, a_{x}^{\dagger}, a_{y}, a_{y}^{\dagger}$ and write down the commutation relations between the four operators.
(b) Express the angular momentum $L_{z}=X P_{y}-Y P_{x}$ in terms of $a_{x}, a_{x}^{\dagger}, a_{y}, a_{y}^{\dagger}$. (Note that while H has a very simple form in terms of these operators, L_{z} does not.)
Show using the algebra of these operators that $\left[H, L_{z}\right]=0$ as you would expect for an isotropic 2D oscillator.
(c) Define "left" and "right circular" operators

$$
b_{L}=\frac{1}{\sqrt{2}}\left(a_{x}+i a_{y}\right), \quad b_{R}=\frac{1}{\sqrt{2}}\left(a_{x}-i a_{y}\right)
$$

Show that the only non-zero commutators between the operators $b_{L}, b_{L}^{\dagger}, b_{R}, b_{R}^{\dagger}$ are $\left[b_{L}, b_{L}^{\dagger}\right]=\left[b_{R}, b_{R}^{\dagger}\right]=1$.
(d) Show that both the Hamiltonian H and the angular momentum L_{z} can be written very simply in terms of the number operators $N_{L}=b_{L}^{\dagger} b_{L}$ and $N_{R}=b_{R}^{\dagger} b_{R}$ for "left" and "right circular" quanta. (Note that we have managed to obtain a very simple form for L_{z} while maintaining that of H.)
(e) Show that common eigenstates of H and L_{z} can be written as

$$
\left|n_{R}, n_{L}\right\rangle=\frac{\left(b_{R}^{\dagger}\right)^{n_{R}}\left(b_{L}^{\dagger}\right)^{n_{L}}}{\sqrt{n_{R}!n_{L}!}}|0,0\rangle
$$

and find the corresponding eigenvalues.
(f) Show that an energy eigenvalue $(n+1) \hbar \omega$ has an $(n+1)$-fold degeneracy corresponding to angular momentum $m \hbar$ with $m=-n,-n+2, \ldots, n-$ $4, n-2, n$. Also argue that for a given value of n (energy) and of m (angular momentum), there is a unique eigenstate.
2. Landau levels for a charged particle in an external magnetic field: Shankar Ex. 12.3.8 (p. 300-318).
3. Read Shankar Ex. 12.4 .3 (p. 320). You don't need to turn it in, but it might help you with the next question.
4. (a) Show that the 3 D rotation matrices $\mathcal{R}_{\hat{\mathbf{n}}}(\epsilon)$ for a counter-clockwise rotation by an infinitesimal angle ϵ about an axis $\hat{\mathbf{n}}$ are given by:

$$
\begin{gathered}
\mathcal{R}_{\hat{\mathbf{x}}}\left(\epsilon_{x}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\epsilon_{x} \\
0 & \epsilon_{x} & 1
\end{array}\right), \quad \mathcal{R}_{\hat{\mathbf{y}}}\left(\epsilon_{y}\right)=\left(\begin{array}{ccc}
1 & 0 & \epsilon_{y} \\
0 & 1 & 0 \\
-\epsilon_{y} & 0 & 1
\end{array}\right) \\
\text { and } \mathcal{R}_{\hat{\mathbf{z}}}\left(\epsilon_{z}\right)=\left(\begin{array}{ccc}
1 & -\epsilon_{z} & 0 \\
\epsilon_{z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

By "show", I mean that at the very least you should draw some simple 2D pictures of the plane perpendicular to the axis of rotation (in each case) and give a geometrical argument. Make sure you understand the \pm signs.
(b) Check that rotations in 3D do not commute by showing that

$$
\mathcal{R}_{\hat{\mathbf{y}}}\left(-\epsilon_{y}\right) \mathcal{R}_{\hat{\mathbf{x}}}\left(-\epsilon_{x}\right) \mathcal{R}_{\hat{\mathbf{y}}}\left(\epsilon_{y}\right) \mathcal{R}_{\hat{\mathbf{x}}}\left(\epsilon_{x}\right)=\mathcal{R}_{\hat{\mathbf{z}}}\left(-\epsilon_{x} \epsilon_{y}\right)
$$

(c) Let $U_{\hat{\mathbf{n}}}(\epsilon)$ be the unitary operator representing the effect of the rotation $\mathcal{R}_{\hat{\mathbf{n}}}(\epsilon)$ on the Hilbert space of states of a quantum system. Thus the quantum operators must satisfy the relation

$$
U_{\hat{\mathbf{y}}}\left(-\epsilon_{y}\right) U_{\hat{\mathbf{x}}}\left(-\epsilon_{x}\right) U_{\hat{\mathbf{y}}}\left(\epsilon_{y}\right) U_{\hat{\mathbf{x}}}\left(\epsilon_{x}\right)=U_{\hat{\mathbf{z}}}\left(-\epsilon_{x} \epsilon_{y}\right) .
$$

Using $U_{\hat{\mathbf{n}}}(\epsilon)=\mathbf{1}-i \epsilon L_{\mathbf{n}} / \hbar$ where $\mathbf{n}=\mathbf{x}, \mathbf{y}, \mathbf{z}$, and $L_{\mathbf{n}}=\mathbf{L} \cdot \hat{\mathbf{n}}$, derive the commutation relation

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z} .
$$

5. Consider angular momentum operators $\mathbf{J}=\left(J_{x}, J_{y}, J_{z}\right)$, that obey the standard algebra $\left[J_{x}, J_{y}\right]=i \hbar J_{z}$ and cyclic permutations.
Let $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ and $J_{ \pm}=J_{x} \pm i J_{y}$
Show that
(a) $\left[J_{z}, J_{+}\right]=\hbar J_{+}$
(b) $\left[J_{z}, J_{-}\right]=-\hbar J_{-}$
(c) $\left[J_{+}, J_{-}\right]=2 \hbar J_{z}$
(d) $\left[J^{2}, J_{+}\right]=\left[J^{2}, J_{-}\right]=\left[J^{2}, J_{z}\right]=0$
(e) $J^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{z}^{2}$
