PHYSICS 828

Home Work Assignment \# 6

Due: Fri., Mar. 4, 2011.
Completed assignments should be placed in the grader N. Ramalingam's mail box in PRB by 5:00 PM.

1. Recall the Heisenberg picture for a system described by a time-independent Hamiltonian \mathcal{H}. In this representation the states have no time evolution, so that $\left|\psi^{\prime}\right\rangle=|\psi(t=0)\rangle$, and operators acquire a time dependence via

$$
\mathcal{A}^{\prime}(t)=\exp (+i \mathcal{H} t / \hbar) \mathcal{A} \exp (-i \mathcal{H} t / \hbar)
$$

Note that I use the "prime" notation to denote Heisenberg picture states and operators, and those without primes are in the usual Schrödinger picture.
(a) Show the equivalence of the two pictures by showing that

$$
\langle\chi(t)| \mathcal{A}|\psi(t)\rangle=\left\langle\chi^{\prime}\right| \mathcal{A}^{\prime}(t)\left|\psi^{\prime}\right\rangle
$$

(b) Show that the Heisenberg equation of motion (that replaces the Schrödinger equation) is

$$
\frac{d}{d t} \mathcal{A}^{\prime}(t)=\frac{i}{\hbar}\left[\mathcal{H}, \mathcal{A}^{\prime}(t)\right],
$$

where we assume that \mathcal{A} has no explicit time-dependence.
Now consider the problem of spin precession in an external magnetic field in the Heisenberg picture. (In class we used the Schrödinger picture). (c) Consider a spin \mathbf{S} in an external (time-independent) field \mathbf{B}. Show that:

$$
\frac{d}{d t} \mathbf{S}^{\prime}=\mathbf{S}^{\prime} \times \gamma \mathbf{B}
$$

You only need to explicitly compute, e.g., $d S_{x}^{\prime} / d t$ and argue by symmetry. Note that this operator equation has the same structure as the classical equation of motion!
(d) Specialize to $\mathbf{B}=B_{0} \hat{z}$ and solve the equations of motion to for $S_{\alpha}^{\prime}(t)$ (where $\alpha=x, y, z$) given $S_{\alpha}^{\prime}(0)$. Show that this leads to same precession that we had deduced from our Schrödinger picture analysis.
2. Shankar Ex. 14.5.3 (p. 401).
3. Consider two spinless particles of mass M_{1} and M_{2} moving in a central potential $V_{0}(r)$ and interacting with each other via $V\left(r_{12}\right)$ where $r_{12}=$ $\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$. The Hamiltonian is

$$
\mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{2}+V\left(r_{12}\right) \quad \text { with } \quad \mathcal{H}_{i}=-\frac{\hbar^{2}}{2 M_{i}} \nabla_{i}^{2}+V_{0}\left(r_{i}\right) .
$$

Show that \mathbf{L}_{1} and \mathbf{L}_{2} are not conserved. However, the total orbital angular momentum $\mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{2}$ is, i.e.,

$$
[\mathbf{L}, \mathcal{H}]=0
$$

It is sufficient for you to show that this is true for L_{z} since very similar algebra works for the other components (or you can appeal to rotational invariance).
4. Consider spin-orbit interaction described by the Hamiltonian

$$
\mathcal{H}_{\mathrm{so}}=\lambda_{\mathrm{so}} \mathbf{L} \cdot \mathbf{S}
$$

(a) Show that although neither \mathbf{L} nor \mathbf{S} are conserved, we have

$$
\left[\mathbf{J}, \mathcal{H}_{\mathrm{so}}\right]=0,
$$

where $\mathbf{J}=\mathbf{L}+\mathbf{S}$ is the total angular momentum. As in the previous problem, it is sufficient to show these assertions for the z-components of the angular momenta.
(b) Show that $\left[L^{2}, \mathcal{H}_{\mathrm{so}}\right]=0$ and $\left[S^{2}, \mathcal{H}_{\mathrm{so}}\right]=0$.
(c) Thus it follows from (a) and (b) that L^{2}, S^{2}, J^{2},and J_{z} form a set of commuting observables. Find the eigenvalues of $\mathcal{H}_{\text {so }}$.
5. Shankar 15.1.1 (page 405). Please also derive eq. (15.1.12).
6. Shankar 15.1.2 (page 407-408).
7. Shankar 15.2.2 (page 413). Part (2) will be done in class.
8. Shankar 15.2.5 (page 415).
9. Consider two spin-half particles interacting via the Hamiltonian

$$
\mathcal{H}=\alpha \mathbf{S}_{1} \cdot \mathbf{S}_{2}
$$

where the coupling constant is $\alpha>0$.
Find the eigenstates and eigenvalues, noting their degeneracies.

