
PHYSICS 829

Home Work Assignment # 1 4/1/2011

Due: Fri., Apr. 8, 2011.

1. Let us consider the interaction of a Hydrogen atom with a perfectly
conducting wall, and contrast it with the problem of Van der Waals (vdW)
force between neutral atoms, that we studied last quarter.

Consider a Hydrogen atom at a distance d from a perfect conductor which
fills the half space z < 0. Let d be much larger than atomic length scales, so
that we can safely use a classical, macroscopic description of the metal. The
atom interacts with its “electrical image” on the other side of the boundary.
(a) Recall that for the case of two neutral hydrogen atoms, we had shown
that the the dipole-dipole interaction energy is given by

W =
e2

R3
(XAXB + YAYB − 2ZAZB),

where R is the separation between atoms A and B, and (XA, YA, ZA) and
(XB, YB, ZB) are the positions of the electrons associated with each atom.
(You may wish to go through this derivation again).
For the present problem, draw a picture and argue that XB = XA, YB = YA,
ZB = −ZA, R = 2d, and e2 → −e2, where A denotes the atom and B its
image.
Thus conclude that the interaction energy between the neutral atom and
the wall is

W = − e2

8d3
(X2

A + Y 2
A + 2Z2

A),

(b) Use first order perturbation theory to show that, when the atom is in
its ground state, the energy of interaction is

E1(d) = − e2a20
2d3

.

Note that, unlike the case of two atoms where the first order result vanished
by symmetry, the atom and its image charge have a non-zero interaction at
first order. Thus the energy scales like the inversely as the third power of
the distance here in contrast to the inverse sixth power in the case of vdW
interaction.
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2. The goal of this problem is to understand perturbation theory better
using an exactly solvable two-level system.
Consider the Hamiltonian H = H0 +H1 where

H0 =

(
ε1 0
0 ε2

)
, and H1 =

(
0 w
w∗ 0

)
.

Without loss of generality, assume ε1 ≥ ε2.

(a) Find the exact eigenvalues of H. (i) Expand your results in powers of |w|
assuming ε1 6= ε2. What is the condition on the validity of this expansion?
(ii) What is the exact result in the degenerate case ε1 = ε2?
(b) Use nondegenerate perturbation theory in H1 and compare with result
of part a(i).
(c) Use degenerate perturbation theory in H1 and compare with results of
part a(ii).

3. Consider again the problem you solved in the Final exam last quarter.
An electric dipole ~µ with a fixed center-of-mass, is free to rotate in the x-y
plane with the angular degree of freedom ϕ. Its dynamics is governed by
the Hamiltonian

H = − h̄2

2I

d2

dϕ2
− µE cosϕ.

The first term is the Hamiltonian of two-dimensional quantum rotor with
momentum of inertia I. The second term describes the effect of an external
electric field E along the x̂ direction.
Treating the electric field as a perturbation, find the shift in energy (up to
second order) and the perturbed wavefunctions (first order).
You had only considered the ground state earlier, now find the effects of
E on all the states. Is it necessary to use degenerate perturbation theory?
Explain.

4. Read carefully through Shankar Ex. 17.3.4 (p. 470-417). These results
will be used in problem 5, but you do not need to hand in the solution.
If you plan on doing any kind of theoretical physics or AMO experiments, I
would recommend that you solve this problem even though it is not required
for the class.
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5. Our goal is to understand the fine structure of the n = 2 level of hy-
drogen. We use below the standard spectroscopic notation n`j , where n is
the principal quantum number, s, p, d, . . . denote orbital angular momentum
` = 0, 1, 2, . . . and j is the total angular momentum quantum number.

The Hamiltonian is given by

H = H0 +Hf

where H0 =
(
p2/2m− e2/r

)
is the usual non-relativistic part, and the fine

structure Hamiltonian

Hf = HK +Hso +HD

is the relativistic perturbation. Here

HK = −p4/(8m3c2)

arises from the change in mass with velocity,

Hso =
e2

2m2c2
1

r3
L · S

is the spin-orbit interaction between the orbital angular momentum L and
the spin S, and the Darwin term is given by

HD =
πe2h̄2

2m2c2
δ(3)(r).

(a) Check that the n = 2 level is eight-fold degenerate, and spanned by the
basis |`,m`; s,ms〉.
(b) Using parity, or otherwise, show that Hf does not connect the 2s and
2p subspaces. Thus the 8× 8 Hamiltonian Hf in the n = 2 space breaks up
into a 2× 2 block and a 6× 6 block.

For the calculations below, you are free to use the results for various matrix
elements calculated on pages 467 - 471 of Shankar. For the Darwin term you
will need the values of the normalized H-atom wavefunctions at the origin,
which you can also find in your text book.

(c) First consider the 2s states. Since HK and HD spin-independent terms,
they are simply proportional to the unit matrix in this subspace. Show that

〈HK〉2s = − 13

128
α4mc2 and 〈HD〉2s =

1

16
α4mc2.
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(d) Next show that 〈Hso〉2s = 0.
Thus conclude that 2s1/2 level is shifted (below) its non-relativistic value by
an energy − 5α4mc2/128.

(e) Next we turn to the 2p states. Again HK and HD do not depend on the
spin, are proportional to the unit matrix in this subspace. Show that

〈HK〉2p = − 7

384
α4mc2 and 〈HD〉2p = 0.

(f) For the spin-orbit interaction, note that L · S is not diagonal in the
|` = 1,m`; s = 1/2,ms〉. Hence one needs to find a new basis in which Hso

is diagonalized. This is the basis of eigenstates of J2 and Jz where J = L+S.
Show that the six-fold degeneracy of the 2p states is partially removed by
Hso, resulting in a two-fold degenerate 2p1/2 level and a four-fold degenerate
2p3/2 level. (What is the symmetry that leads to these degeneracies?)

(g) Show that the eigenvalues of Hso are given by − α4mc2/48 (for j = 1/2)
and α4mc2/96 (for j = 3/2).

(g) Thus conclude that: (I) the 2p1/2 level is lowered by − 5α4mc2/128, thus
resulting in an “accidental degeneracy” between the 2s1/2 and 2p1/2 levels
(see below). (II) the 2p3/2 level is higher than the j = 1/2 levels. Its energy
is lowered by − α4mc2/128.

Solving the Dirac equation for Hydrogen atom, one finds that the energy
eigenvalue depends only on n and on j. Thus the 2s1/2, 2p1/2 degeneracy
found above persists to all orders in α within Dirac theory.

Experimentally, there is a Lamb shift between these levels, with 2s1/2 raised
with respect to the 2p1/2 by 1060 MHz, an order of magnitude smaller than
the fine-structure splitting of 2p1/2 and 2p3/2. The observation of the Lamb
shift in 1949 had profound consequences on the development of physics in
the second half of the 20th century. It led to the development of Quantum
Electrodynamics (QED). In QED, the Lamb shift can be understood in
terms of the interaction of the electron with fluctuations of the EM field in
vacuum.
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