
PHYSICS 829

Home Work Assignment # 5 5/9/2011

Due: Mon., May 16, 2011.

Review of Classical Electrodynamics:

1. Continuity equation: Shankar Ex. 18.4.1 (p. 492)

2. Gauge invariance: Shankar Ex. 18.4.2 (p. 493)

3. Coulomb (or transverse) gauge: Shankar Ex. 18.4.3 (p. 494)

Quantum particle interacting with classical electromagnetic fields:

4. Gauge invariance in QM: Shankar Ex. 18.4.4 (p. 497)

5. Continuity equation in QM: Define a gauge-invariant current and check
the continuity equation for the probability density ρ(r, t) = |Ψ(r, t)|2.

6. Aharanov-Bohm Effect: Consider a charged particle, of charge q and
mass M , confined to the interior of a “toroidal” region:

a < r < b, 0 ≤ ϕ < 2π, −h < z < +h,

where we use a cylindrical coordinate system. A magnetic flux Φ threads the
“hole” of the torus as a result of a long thin solenoid (radius � a) oriented
along the z-axis. (The scalar potential is identically zero, so we can use the
symbol Φ for the magnetic flux without any cause for confusion).

(a) Show that the vector potential

Aϕ =
Φ

2πr
, Ar = Az = 0

can be used to describe the magnetic field.
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(b) Write down the time-independent Schrödinger equation for the charged
particle, and show that the energy eigenfunctions are of the form

Ψ(r, ϕ, z) = Rn(r)eimϕ sin

[
jπ(z + h)

2h

]
.

For the given boundary conditions, what are the allowed values of j and m?

(c) Show that the radial wavefunction Rn(r) is a solution of the equation

− h̄2

2M

[
d2Rn

dr2
+

1

r

dRn

dr
+

(m− Φ/Φ0)
2

r2
Rn − k2zRn

]
= ERn

where kz = jπ/2h and Φ0 = hc/e is the flux quantum, and Rn(r) satisfies
the boundary conditions Rn(a) = Rn(b) = 0. This equation can be solved
in terms of Bessel functions but that will not be necessary for our purposes.

(d) Using the result of part (c) argue that the energy E of a stationary state
must depend on the magnetic flux Φ even though the electron only moves
in the region a < r < b where the magnetic field is zero, and the flux exists
only in the region r � a.

7. Absorption and emission of radiation:

Consider an atom in an external electric field. In the dipole approximation,
we may write the perturbation as

H1(t) = eR ·E0

(
e−iωt + e+iωt

)
for 0 < t < T and H1(t) = 0 at other times. We use here (−e) as the charge
of the electron.

(a) Let the initial state of the system be an eigenstate |i〉 of the atomic
Hamiltonian H0 with energy Ei. Show using standard time-dependent per-
turbation theory that the probability that the atom will be in a state |f〉 of
energy Ef at any time t ≥ T is given by |af (T )|2 where

af (T ) =
〈f |H1|i〉

h̄

[
1− ei(ωfi−ω)T

ωfi − ω

]
+
〈f |H†1 |i〉

h̄

[
1− ei(ωfi+ω)T

ωfi + ω

]

where h̄ωfi = (Ef − Ei) and H1(t) = H1e
−iωt +H†1e

+iωt.
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(b) For near resonant absorption with ω ≈ ωfi, show that

|af (T )|2 ' e2

h̄2
|〈f |R ·E0|i〉|2

[
sin[(ωfi − ω)T/2]

(ωfi − ω)/2

]2
(1)

(c) In the limit of large T , show that the factor [. . .]2 in eq. (1) can be
replaced by 2πTδ(ω − ωfi).

We next want to consider absorption from “incoherent” radiation with a
continuous frequency spectrum, for which we can integrate the probability
in eq. (1) above over the incident spectrum u(ω) (defined below). (Otherwise
we’d have to first integrate the amplitude over the spectrum and then find
the probability). To get all the prefactors right, we argue as follows. You do
not need to do the algebra in the steps below where it says “one can show”
as those steps have little to do with quantum mechanics per se.

(i) For unpolarized radiation, averaging over the directions of E0 one can
show that |〈f |R ·E0|i〉|2 → 1

3 |E0|2|〈f |R|i〉|2

(ii) One can further show that |E0|2 can be replaced by 2πu(ω), where u(ω)
is the time-averaged energy density per unit ω. This follows from using the
expression |E0|2/4π as the energy density in the radiation field including
both E and B fields, noting the form E = 2E0 cos(ωt) used in part (a) and
time-averaging.

(d) Put together the results of part (c) with (i) and (ii) above to obtain the
rate of absorption of energy

Rabs =
1

T

∫
|af (T )|2dω =

4π2

3

e2

h̄2
u(ωfi)|〈f |R|i〉|2.

One can show that an almost identical calculation – focusing on the second
term in (a) – gives the same result for rate of stimulated emission of radi-
ation. Here stimulated emission is the de-excitation from a (higher energy)
initial state at energy Ei to a (lower energy) final state at energy Ef in the
presence of a field oscillating at frequency ω ≈ (Ei − Ef )/h̄ = −ωfi.
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8. Spontaneous emission and Einstein’s A and B coefficients:

Experimentally it is well known that an atom in an excited state will spon-
taneously emit radiation and make a transition to a lower energy state. A
microscopic derivation of spontaneous emission goes beyond a classical treat-
ment of the EM field and requires quantizing it. Here we present a simple
argument due to Einstein that permits one to relate the rate of spontaneous
emission to that for absorption using simple statistical ideas. In fact, this
argument (1917) predates the Schrödinger equation (1926)!
This problem assumes some knowledge of elementary statistical mechanics.
Let us write the result of Prob. 7 for the rate of absorption as Rabs =
Bif u(ωfi). The rate of stimulated emission is similarly Bfi u(ωfi), where
the principle of detailed balance implies Bfi = Bif . The quantum calcula-
tion in Prob. 7 explicitly showed this equality.

(a) Let N(i) be the number of atoms in the ith state. In equilibrium the
rates of transition from i → f must balance those from f → i. Show that
this leads to the condition

Bfi u(ωfi)N(f) +AfiN(f) = Bif u(ωfi)N(i),

where the second term on the LHS represents spontaneous emission that
exists independent of the presence of any radiation.

(b) Using the Boltzmann distribution

N(i)/N(f) = exp(−Ei/kBT )/ exp(−Ef/kBT )

for atoms in thermal equilibrium, show that the result of part (a) leads to

u(ωfi) =
Afi/Bfi

[exp(h̄ωfi/kBT )− 1]
.

(c) Now we can use Planck’s result for black-body radiation to determine the
A/B ratio. Even more simply, we can argue that A and B are microscopic
quantum mechanical probabilities that must be independent of temperature.
Thus we take the high-temperature, low-frequency limit of the result of
part (b) and equate it to the classical Rayleigh-Jeans formula u(ωfi) ≈
(ω2

fi/π
2c3)kBT to obtain

Afi =
h̄ω3

fi

π2c3
Bfi.

Given that we already calculated Bfi in Problem 7, this result tells us what
Afi must be.
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