PHYSICS 829

Home Work Assignment \# 6
5/27/2011
Due: Fri., June 3, 2011 in class.

1. Continuity equation for Dirac equation: Shankar Ex. 20.1.1 (p. 566)
2. Dipole Selection Rules: Show, using the approach suggested below, that the dipole matrix elements $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| \mathbf{r}|n, \ell, m\rangle$ are non-zero only for

$$
\Delta m=0, \pm 1 \quad \text { and } \quad \Delta \ell= \pm 1
$$

where $\Delta m=m^{\prime}-m$ and $\Delta \ell=\ell^{\prime}-\ell$.

There are many ways to derive this very important result. The most general is to use the Wigner-Eckart theorem (discussed, but not proved, in Shankar Sec. 15.3 - a Section that we did not cover in class). Another way is to use properties of spherical harmonics and just do the integrals involved. Here I lead you through an algebraic approach, which is slightly tedious, but straightforward.
(a1) Using the matrix elements of $\left[L_{z}, z\right]$ show that $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| z|n, \ell, m\rangle=0$ unless $m^{\prime}=m$.
(a2) Using the commutators $\left[L_{z}, x\right]$ and $\left[L_{z}, y\right]$ find relations between the matrix elements $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| x|n, \ell, m\rangle$ and $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| y|n, \ell, m\rangle$. Hence show that either $\left(m^{\prime}-m\right)^{2}=1$ or else both $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| x|n, \ell, m\rangle=\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| y|n, \ell, m\rangle=$ 0.
(a3) Thus conclude that $\Delta m=0, \pm 1$.
(b1) Calculate $\left[L^{2}, z\right]$ and using $\mathbf{r} \cdot \mathbf{L}=0$, find $\left[L^{2},\left[L^{2}, z\right]\right]$. Hence deduce that

$$
\left[L^{2},\left[L^{2}, \mathbf{r}\right]\right]=2 \hbar^{2}\left(\mathbf{r} L^{2}+L^{2} \mathbf{r}\right)
$$

(b2) Using matrix elements of this double commutator between the states $\left|n^{\prime}, \ell^{\prime}, m^{\prime}\right\rangle$ and $|n, \ell, m\rangle$ show that the dipole matrix element vanishes unless $\Delta \ell= \pm 1$.
3. Spontaneous Emission: Here we solve the problem in a slightly different way from the way we did it in class. Let the Hamiltonian of the system be $H=H_{\text {atom }}+H_{\mathrm{EM}}+H_{\text {int }}$, where the first two terms are the Hamiltonians of the atom and that of the EM fields. The interaction Hamiltonian in the electric dipole approximation is given by

$$
H_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{E}
$$

Here $\boldsymbol{\mu}$ is the dipole moment operator of the atom and \mathbf{E} the electric field operator at the position of the atom.
$\overline{\text { Treat }} H_{\text {int }}$ in lowest order perturbation theory using Fermi's golden rule.
(a) Let us use 'obvious' notation for the unperturbed initial and final states: $\left|\Psi_{i}\right\rangle=|i\rangle \otimes|0\rangle$ and $\left|\Psi_{f}\right\rangle=|f\rangle \otimes\left|n_{m}=1\right\rangle$ where $|i\rangle,|f\rangle$ are atomic states, $|0\rangle$ is EM vacuum and $\left|n_{m}=1\right\rangle$ has one-photon in the mode ' m ' with frequency ω, where $\hbar \omega=\epsilon_{i}-\epsilon_{f}$. Show that

$$
\left.\left.\left|\left\langle\Psi_{f}\right| H_{\mathrm{int}}\right| \Psi_{i}\right\rangle\left.\right|^{2}=2 \pi \hbar \omega\left|\langle f| \boldsymbol{\mu} \cdot \mathbf{u}_{m}\right| i\right\rangle\left.\right|^{2}
$$

where \mathbf{u}_{m} is the "mode function" (introduced in class).
(b) Show that the density of final states in a box of volume L^{3} is given by

$$
\rho\left(\epsilon_{f}\right)=\frac{L^{3} \omega^{2}}{\pi^{2} \hbar c^{3}}
$$

(c) Using the Golden Rule show that the rate for spontaneous emission is given by

$$
\left.R_{s}=\frac{4 \omega^{3}}{\hbar c^{3}}|\langle f| \boldsymbol{\mu}| i\right\rangle\left.\right|^{2} \frac{L^{3}}{3}\left|\mathbf{u}_{m}\right|^{2}
$$

Here the factor $1 / 3$ comes from the angular average of $\left(\boldsymbol{\mu} \cdot \mathbf{u}_{m}\right)^{2}$. If the mode function is a plane wave $\left|\mathbf{u}_{m}\right|^{2}=1 / L^{3}$, and we recover the result we have earlier derived using Einstein A and B coefficients in HW $\# 5$.

Note that the spontaneous emission rate can be suppressed significantly over its free space value by placing an atom in a cavity in which there are no modes with a frequency satisfying $\hbar \omega=\epsilon_{i}-\epsilon_{f}$. In the experiment of Hulet, Hilfer and Kleppner, PRL 55, 2137 (1985), this technique was used to increase the lifetime of an excited state by a factor of 20 .

