Electric field of a solid sphere

1) Volume charge density = \(\rho \) uniform

Find total charge contained in sphere of radius \(R \).

\[
Q_{\text{total}} = \int_{\text{vol of sphere}} \rho \, d\tau
\]

Since \(\rho \) is a constant, we can pull it out of the integral.

\[
\int_{\text{vol of sphere}} d\tau = \text{vol of sphere of radius } R = \frac{4}{3} \pi R^3
\]

\[
Q_{\text{total}} = \frac{4}{3} \pi R^3 \rho
\]
You can do this explicitly also.

Draw volume element in spherical co-ordinate.

Two of the dimensions of dV come from $(dr) (r d\theta)$

Third dimension comes from the azimuthal direction.

\[\downarrow \]

move along the dotted circle
Third dimension is
$r \sin \theta \, d\phi$

\[dV = (dr) (r \, d\theta) (r \sin \theta \, d\phi) \]
\[= r^2 \, dr \, \sin \theta \, d\theta \, d\phi \]

\[\int dV = \int_0^R r^2 \, dr \int_0^{\pi} \sin \theta \, d\theta \int_0^{2\pi} d\phi \]
\[= \frac{R^3}{3} \left[-\cos \theta \right]_0^{\pi} \int_0^{2\pi} d\phi \]
\[= \frac{4}{3} \pi R^3 \quad \checkmark \]

\[\cos \theta \bigg|_{\frac{\theta}{\pi}} = 1 - (-1) = 2 \]
Gauss' Law
\[\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\varepsilon_0} \]

Electric field outside sphere at point \(r \)

Step 1: Gaussian Surface

Make a Gaussian surface of the appropriate symmetry that passes through the point of observation \(r \)

Step 2: Identify direction and area of electric field

On the Gaussian surface, the electric field will be constant everywhere and pointing radially outward.

\[\mathbf{E}(\mathbf{r}) = E \hat{r} \]

for \(\mathbf{r} \) lying on surface \(S \)

Step 3: Pick an area element

On the Gaussian surface, the area element will point along the radial direction \(\hat{r} \)

\[d\mathbf{a} = da \hat{r} \]
Step 4 Find enclosed charge
Since S is outside the sphere the amount of charge enclosed
$= \text{total charge} = \frac{4}{3} \pi R^3 \rho$

Step 5 Put everything together in Gauss's Law.

$$\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{4}{3} \pi R^3 \frac{\rho}{\varepsilon_0}$$

Spherical Gaussian surface of radius r

$$E \oint \mathbf{d}a = E \int 4\pi r^2 = \frac{4}{3} \pi R^3 \frac{\rho}{\varepsilon_0}$$

If $r > R$

You can also check $\oint \mathbf{d}a$ explicitly

$$\oint (r d\theta)(r \sin \theta d\phi) = r^2 \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta = 4\pi r^2$$
Electric field inside sphere at point \(r \)

1. Gaussian surface \(S \)
2. \(\vec{E}(r) = \vec{E} \hat{r} \)
3. \(d\mathbf{a} = d\mathbf{a} \hat{r} \)
4. Enclosed charge by Gaussian surface

This surface enclosed only part of the charge
\[
Q_{enc} = \oint_S \rho \, d\tau = \rho \int d\tau = \rho \frac{4}{3} \pi r^3
\]

\(\rho \) comes out because constant

\[
E \oint_S d\mathbf{a} = \frac{\rho}{\varepsilon_0} \frac{4}{3} \pi r^3
\]

\[
E \cdot 4\pi r^2 = \frac{\rho}{\varepsilon_0} \frac{4\pi r^3}{3}
\]

\[
\therefore \quad E(r) = \frac{\rho r}{3\varepsilon_0} \hat{r}, \quad r < R
\]
Sketch of electric field along radial dimensions.

Initially the electric field increases as \(r \) increases (but still within the sphere) because more and more charge is enclosed.

For \(r \geq R \) the sphere behave like a point charge concentrated at the center and \(E \propto \frac{1}{r^2} \).
Total charge on inner cylinder

\[Q_{\text{inner cylinder}} = \int \rho \, d\sigma = \rho \pi a^2 \, L \]

\[Q_{\text{outer cylinder}} = \int \sigma \, da = \sigma 2\pi b \, L \]

The total system is neutral

\[Q_{\text{inner}} = Q_{\text{outer}} \]

\[\rho \pi a^2 \, L = \sigma 2\pi b \, L \]

\[\rho a^2 = 2\sigma b \]

and \(\sigma \) and \(\rho \) have opposite sign.
Step 1: Gaussian surface: cylinder passing through point a.

Step 2: $E = E \hat{s}$

Step 3: $da = da \hat{s}$

Step 4: Enclosed charge:

$Q_{enc} = \oint p \, dr = \frac{p \pi \ell^2}{V_{ol}}$

Step 5: $E \oint_{S}^{a} da = \frac{p \pi \ell^2}{\epsilon_0}$

$E \frac{2 \pi l \ell}{\epsilon_0}$
\[E = \frac{\rho \delta}{2\varepsilon_0} \]
\[E(x) = \frac{\rho \delta}{2\varepsilon_0} \quad \text{for} \quad \delta < a \]

E field \(a < \delta < b \)

Step 1 - 3

as before

Step 4: \(Q_{enc} = \rho \pi a^2 l \)

Notice we have "\(a \)" here and not \(\delta \) because charge exists only up to \(\delta \leq a \)
Step 5:

\[E \oint da = \frac{\rho \pi a^2 l}{\varepsilon_0} \]

\[E \ 2\pi bl = \frac{\rho \pi a^2 l}{\varepsilon_0} \]

\[E(x) = \frac{\rho a^2}{2\varepsilon_0} \hat{s} \]

\[\text{E field } b > a \]

Step 1-3
Same as before

Step 4
Change enclosed
\[= 0 \]

(Surface enclosed
both + charge from inner cylinder \(a \)
- charge from outer)
As we cross \(z = b \) the electric field jumps from \(\frac{\rho a^2}{2\varepsilon_0 b} \) to zero.

\[
\Delta E = \text{jump in electric field} = \frac{\rho a^2}{2\varepsilon_0 b}
\]

As shown earlier, \(\rho a^2 = 2\sigma b \)

\[
\Rightarrow \quad \Delta E = \frac{2\sigma b}{2\varepsilon_0 b} = \frac{\sigma}{\varepsilon_0}
\]

\[
\Delta E = \frac{\sigma}{\varepsilon_0} \quad \text{surface charge density}
\]

jump in electric field across a charged surface
2.17

Infinite plate of thickness $2d$

volume density p.

E field points along $+y$ for $y > 0$

and points along $-y$ for $y < 0$

This fixes the direction of E

$E(z)$ can only depend on y

because we are told it is an infinite slab

so it cannot have any dependence on x or z. Why? because there is no

way to tell one value of z from another.

They are all equivalent for an ∞ slab.

(claim for x). If there was an edge

we could differentiate a point that is closer

to the edge from one that is further away
E field inside slab \(y < d \)

Step 1: At a point \(y \) away from center, draw the box-like Gaussian surface of area \(A \) and length \(2y < 2d \).

Step 2: The magnitude of \(E \) is the same on both sides and points along \(\pm \hat{y} \).

Step 3: Area \(\hat{a} \) area points out as shown.
Step 4: Charge enclosed by gaussian surface

\[\int \vec{P} \, d\mathbf{r} = \text{volume of box} \]
\[= PA2y \]

Step 5:

\[\oint \vec{E} \cdot d\mathbf{a} = EA + EA = \frac{PA2y}{\varepsilon_0} \]

contribution from the shaded surfaces.

The other surfaces do not contribute because the area vector is \(\perp \) to \(\vec{E} \) field on that surface.

\[2EA = 2 \frac{PAy}{\varepsilon_0} \]

\[\vec{E}(y) = \frac{Py}{\varepsilon_0} \hat{n} \]

normal to face.
E field outside the box

Step 1-3 same

Step 4: change enclosed = \(P \cdot A \cdot 2d \)

Step 5:

\[2EA = \frac{P \cdot A \cdot 2d}{\varepsilon_0} \]

\[E(y) = \frac{Pd}{\varepsilon_0} \hat{n} \]

Sketch: If \(E \) points along \(+y \) we treat it as positive
If it points along \(-y \) we treat it as negative

Note: as \(d \rightarrow 0 \) and \(2Pd \rightarrow 0 \)
we get back the field of an infinitely thin slab \(E = \frac{\sigma}{2\varepsilon_0} \)
What is the flux through shaded surface?

We know that if the charge was enclosed by a surface the flux would be

\[\Phi = \oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\varepsilon_0} = \frac{q}{\varepsilon_0} \]

If we choose that surface using symmetry we could find the flux through shaded area.

+ 4 more cubes at the bottom.
What are the total # of exposed faces:

6 sides × \frac{4 \text{ faces}}{\text{side}} = 24 \text{ faces}

The flux through each face is identical (by symmetry)

⇒ flux through any 1 face = \frac{\text{total flux}}{24}

flux through = \frac{9 \epsilon}{24 \epsilon_0}

Brute force:

Electric field of point charge:

\[E(x) = \frac{q}{4\pi \epsilon_0} \frac{\hat{r}}{r^2} = \frac{q}{4\pi \epsilon_0} \frac{r}{r^3} \]

\[r = (x^2 + y^2 + z^2)^{\frac{1}{2}} \]

\[\mathbf{r} = x \hat{x} + y \hat{y} + z \hat{z} \]
\[\Phi_{\text{Face}} = \int_{\text{area of 1 face}} E \cdot da = \int E \cdot \hat{y} \, dx \, dz \]

 Flux through 1 face

the area of the shaded face points along \(\hat{y} \).

\[E \cdot \hat{y} = \frac{y}{r^3} \frac{q}{4\pi \varepsilon_0} \bigg|_{\text{evaluated at } y = a} \]

\[= \frac{q}{4\pi \varepsilon_0} \frac{a}{(x^2 + z^2 + a^2)^{3/2}} \]

\[\Phi_{\text{Face}} = \frac{q \, a}{4\pi \varepsilon_0} \int_0^a \int_0^a \frac{dz \, dz}{(a^2 + x^2 + z^2)^{3/2}} \]
#1.38 \(a) \quad \mathbf{v}_1 = \frac{r^2}{r} \mathbf{r} \)

\[
\nabla \cdot \mathbf{v}_1 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \mathbf{v}_1 \cdot \mathbf{r} \right)
\]

\[
= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^4 \right) = \frac{1}{r^2} \cdot 4r^3 = 4r
\]

Divergence theorem:

\[
\int \nabla \cdot \mathbf{v}_1 \, d\tau = \int_S \mathbf{v}_1 \cdot d\mathbf{a}
\]

LHS:

\[
\int \nabla \cdot \mathbf{v}_1 \, d\tau = \int (4r) \, r^2 \sin \theta \, d\theta \, d\phi \, dr
\]

\[
= (4\pi) \left(4 \right) \int_0^R r^3 \, dr
\]

\[
\int \nabla \cdot \mathbf{v}_1 \, d\tau = 4\pi R^4
\]

RHS:

\[
\int_S \mathbf{v}_1 \cdot d\mathbf{a} = \int \left(\frac{r^2}{r} \mathbf{r} \cdot \mathbf{r} \right) \, d\mathbf{a}
\]

on surface
of radius \(R \)

\[
= \frac{u_i}{r^2} \, da
\]
\[\oint \mathbf{v}_1 \cdot d\mathbf{a} = \iiint d\theta \, d\phi \, \sin \theta \, r^4 \]
\[= R^4 \cdot 4\pi \]
\[\oint_S \mathbf{v}_1 \cdot d\mathbf{a} = 4\pi R^4 \]

\[\Rightarrow \text{LHS} = \text{RHS} \quad \text{Div then holds} \]

(b) \[\mathbf{v}_2 = \frac{1}{r^2} \hat{r} \]
\[\nabla \cdot \mathbf{v}_2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} (1) = 0 \]

LHS: \[\int \nabla \cdot \mathbf{v}_2 \, d\tau = 0 \]

RHS: \[\oint_S \mathbf{v}_2 \cdot d\mathbf{a} = \iint \frac{1}{r^2} \, r^2 \sin \theta \, d\theta \, d\phi \]
\[= 4\pi \]

LHS \neq \text{RHS} \quad \text{WHY?} \]
The problem is that the calculation of \(\nabla \cdot \mathbf{V}_2 \) is missing a singular contribution at \(r = 0 \).

\[
\nabla \cdot \mathbf{V}_2 = \nabla \cdot \left(\frac{1}{r^2} \mathbf{r} \right) = 4\pi \delta^3 (\mathbf{r})
\]

\[
= \begin{cases}
0 & r \neq 0 \\
4\pi & r = 0
\end{cases}
\]

Now:

\[
\int \nabla \cdot \mathbf{V}_2 \, d\tau = \int 4\pi \delta^3 (\mathbf{r}) \, d\tau
\]

\[= 4\pi \]

and this agrees with RHS.