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Abstract

Gait analysis studies typically utilize continuous curves of data measured over the gait cycle, or a portion of the gait cycle.
Statistical methods which are appropriate for use in studies involving a single point of data are not adequate for analysis of
continuous curves of data. This paper determines the operating characteristics for two methods of constructing statistical
prediction and confidence bands. The methods are compared, and their performance is evaluated using cross-validation
methodology with a data set of the sort commonly evaluated in gait analysis. The methods evaluated are the often-used
point-by-point Gaussian theory intervals, and the simultaneous bootstrap intervals of Sutherland et al. The De6elopment of
Mature Walking, MacKeith Press, London, 1988 and Olshen et al. Ann. Statist. 17 (1989) 1419–40. The bootstrap bands are
shown to provide appropriate coverage for continuous curve gait data (86% coverage for a targeted coverage of 90%). The
Gaussian bands are shown to provide inadequate coverage (54% for a targeted coverage of 90%). The deficiency in the Gaussian
method can lead to inaccurate conclusions in gait studies. Bootstrap prediction and confidence bands are advocated for use as a
standard method for evaluating gait data curves because the method is non-parametric and maintains nominal coverage levels for
entire curves of gait data. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The data analyzed in a typical gait study consists of
continuous curves of data expressed as a function of the
percentage of the gait cycle. Gait data that consists of a
parameter vs. time (e.g. knee flexion angle vs percent-
age of gait cycle) must be handled using a different
method than data that consists of a single observation
(e.g. knee flexion angle at heel strike). Statistical meth-
ods appropriate for the analysis of less complex single
point numerical data are inadequate when applied to
continuous curves of gait data.

For numerical data, recall that prediction intervals
contain, with pre-specified coverage probability, a new
observation from the same population from which a
statistical (or training) sample is drawn. For continu-
ous, or gait curve data, the analogue of prediction
intervals are prediction bands. Prediction bands contain,
with pre-specified coverage probability, a new curve
drawn from the same population as the training curves.
One use of prediction bands is to classify new subjects
as belonging to the same population, or not, as that
from which the training curves are collected.

As an example, consider a prediction band calculated
from a normal subject database that is applied to new
subjects to determine if they should be classified as
members of the normal population. If the curve of a* Corresponding author.
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Fig. 1. Difference of braced and un-braced varus moment in ten
subjects plotted together with 95% bootstrap confidence band for the
mean of the difference.

Fig. 2. For the knee flexion data in Fig. 4, individual 90% point-by-
point prediction intervals (vertical lines), and the corresponding 90%
bootstrap prediction bands (solid line).

new subject falls outside of the prediction band, it can
be stated that the new subject is statistically different
than the population in the normal subject database.

In some research studies it is important to determine
confidence bands for the mean curve of a given popula-
tion. For example, a researcher might want to charac-
terize the effect upon the mean external varus moment
of a group of subjects treated with a given type of knee
brace. In this example, the researcher would wish to
determine a confidence band for the mean difference in
the external varus moment for subjects while wearing
the brace and the external varus moment for the same
subjects while not wearing the brace. If the confidence
band about the difference of the braced and un-braced
curves of each subject contains the horizontal line at
value zero, then one could state that there was no
significant difference between the two conditions. This
application is illustrated in Fig. 1.

One popular method of constructing prediction
bands is to apply Gaussian theory to the univariate
data available at each percent of the gait cycle to
determine a prediction interval for the data at each
plotting position [3,4]. In this analysis, the collection of
separate point-by-point prediction intervals is used as a
prediction band. Confidence bands are formed in a
similar manner except that confidence intervals based
on the T distribution are computed for each fixed
percent of the gait cycle. This method of analysis
ignores the fact that many points are being considered
simultaneously when an entire curve is considered. Such
point-by-point bands are often used in gait analysis. For
example, Fig. 2 is a plot of 100 separate 90% prediction
intervals for knee flexion angle at 100 percentage points
of the gait cycle, with the prediction band determined
by the bootstrap method plotted as well.

If one wishes to examine only a few points in the gait
cycle, a Bonferroni correction can be applied to the
point-by-point (Gaussian) intervals to give the desired
simultaneous coverage for the resulting band [5]. This
correction widens the Gaussian limits. Unfortunately,

the Bonferroni correction (and the width of the simulta-
neous limits at each point) increases with the number of
points at which it is desired to form simultaneous
prediction intervals. With data across the entire gait
cycle, typically consisting of at least 100 points over the
cycle, the limits determined by the Bonferroni method
result in an extremely conservative evaluation. In the
comparison below we omit comparison of the Bonfer-
roni method with the point-by-point and bootstrap
methods.

The bootstrap method is a computationally intensive
technique for constructing bands which provide the
desired coverage based on continuous curves such as is
typical for gait analysis applications to angles, forces,
and moments that are measured over the gait cycle or a
portion of the gait cycle. Roughly, the bootstrap as-
sesses the relationship between the true population and
the sample by studying the relationship between the
gi6en cur6es treated as a pseudo-population and
pseudo-samples drawn from these curves [6]. It uses the
variability in the pseudo-samples to gauge the variabil-
ity in samples that might be drawn from the true
population and the location of center of the pseudo-
population as an indicator of the location of the center
of the true population. The method is represented
pictorially in Fig. 3. The objective of this study was to
quantify the true coverage probability for typical gait
data curves using prediction bands constructed by the
joining of point by point prediction intervals, and pre-
diction bands constructed by the bootstrap method.

2. Methods

We estimated the true coverage probability of future
curves using 90% prediction bands constructed by two
methods as applied to knee flexion angle data for 28
normal subjects collected in the Motion Analysis Labo-
ratory at the Hospital for Special Surgery. The normal
subject curves are displayed in Fig. 4.
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Fig. 3. Illustration of one bootstrap sample drawn from N curves. The variability and mean of many such samples bears the same relation to the population of the N original curves as do the
N original curves to the underlying population.
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The first method combines point-by-point Gaussian
prediction intervals treating the result as a prediction
band while the second method is the bootstrap band of
Sutherland et al. and Olshen et al. [1,2]. The latter
explicitly takes account of the simultaneous nature of
the inference required over the percentage points of the
gait cycle. A detailed mathematical explanation of the
bootstrap band calculation is presented in Appendix A.
All bootstrap bands calculated for this study were
constructed using 400 iterations per band.

We quantified the achieved probability that new
cur6es are covered for point-by-point prediction bands,
and simultaneous bootstrap bands. Cross validation
methodology was used to estimate the true achieved
coverage probabilities for the two methods. To evaluate
a given method, the idea of cross-validation is to re-
move one curve from the original data set, then calcu-
late a prediction band using that method based on the
remaining curves, and then determine if the band con-
tains the removed curve, as illustrated in Fig. 5. This
process is repeated for each of the curves in the original
data set. For a given method of forming bands, the
number of prediction bands constructed is equal to the
number of curves in the data set. The proportion of
deleted curves that are contained in the bands con-
structed from the corresponding data set with that

curve deleted is an estimate of the true achieved cover-
age of the prediction bands.

The cross-validation technique was applied to the set
of knee flexion curves. The goal was to estimate the
true achieved coverage for both methods at a 90% limit.
For the bootstrap bands, we wished to determine
whether there was sufficient data to insure the true
achieved coverage was close to the desired nominal
level. We also wanted to verify that the achieved cover-
age for the bootstrap method was close to the desired
nominal level. For point-by-point bands it was desired
to quantify the deficiency by which the achieved cover-
age fell short of the nominal coverage.

3. Results

The results of the cross-validation calculations were
as follows. For nominal 90% bootstrap prediction
bands, the estimated true achieved coverage was 86%
(24 of the 28 cross validation trials resulted in complete
coverage of the deleted curve by the bootstrap band
calculated from the remaining 27 curves). The standard
error of the estimate is 6.6%; 90% is well with in two
standard errors of 86%. This calculation suggests that
with low harmonic curves, the achieved level of boot-

Fig. 4. Knee flexion angle versus percent gait cycle for 28 normal subjects, with a 90% bootstrap prediction band.
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Fig. 5. Schematic illustration of the cross-validation method. For each cross-validation trial, one curve is removed from the original data set and compared to the band constructed from the
remaining curves. This process was repeated once for each of the N curves in the original data set, removing each curve once and only once. Coverage for a given cross-validation trial is adequate
if the removed curve is completely within the statistical limits constructed from the remaining curves. In this study, coverage for new curves was estimated from all cross validation trials for each
statistical method.
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strap bands is roughly equal to the nominal level with
as few as 25 or so curves.

The estimated true achieved coverage for prediction
bands constructed from 90% point-by-point intervals
was 54% (15 of the 28 curves removed during the
cross-validation trials were covered). With the standard
error of the estimate 9.4%, this estimate shows that the
true coverage is much under the desired coverage,
certainly not more than about 73% and possibly as low
as 35% when 90% intervals are desired.

4. Discussion

This article quantifies the low achieved coverage for
curves when bands are constructed by joining point-by-
point intervals. In contrast, the article shows that the
bootstrap bands introduced in Sutherland et al. [1] yield
achieved coverage equal to nominal levels for data sets
containing as few as 25 low frequency curves.

Confidence or prediction bands constructed using
point-by-point methods have several shortcomings
when applied to entire curves of continuous gait data.
Gaussian theory for prediction or confidence intervals
assumes that the data at each point of the gait cycle
belong to a specific symmetric parametric family; this
assumption must, in principle, be validated separately
at each point at which the intervals are constructed.
Even if all sets of gait data have Gaussian distributions,
a band produced by superimposing point-by-point inter-
vals is visually misleading. This is because the pair of
curves formed in this way suggests that the coverage
probability for new curves drawn from the same popu-
lation as the training data is equal to the nominal level
of the individual intervals. However, the probability of
the simultaneous veracity of a set of statements is lower
than the common individual probability of each one.

The bootstrap method does not rely on any paramet-
ric assumption concerning the distribution of the data
at each point of the curve. Bootstrap prediction and
confidence intervals can be theoretically justified
asymptotically although their performance in small-
sample settings has to be studied on a case-by-case
basis.

The bootstrap is a non-parametric technique designed
to form simultaneous confidence bands for a mean
curve of population or prediction bands for a new
curve drawn from the same population as the original
data. The bootstrap method can also be used to form
either type of band when the researcher is interested in
a given, fixed part of the gait cycle such as between 40%
and 100% of the gait cycle (e.g. stance or swing phase).

Finally, note that while Gaussian intervals are appro-
priate for studying a single point in the gait cycle such
as knee flexion angle at toe-off, prediction intervals for
complex e6ents such as peak knee flexion angle requires

that one knows simultaneous prediction intervals for all
events at points near the peak excursion during the gait
cycle. This is because one cannot a priori pin down the
exact time in the gait cycle when the peak knee flexion
angle occurs. The variability within and between sub-
jects is sufficiently great that the peak excursion will not
occur at the same percentage point of the gait cycle in
each curve. A confidence interval for such a complex
event can be validly computed using a simultaneous
confidence band for knee flexion angle.

The primary disadvantage of the bootstrap method is
its computationally intensive nature. The availability of
inexpensive computing power has mitigated this disad-
vantage in recent years. Further work to quantify the
minimum number of bootstrap iterations necessary for
a given data set would prove beneficial in minimizing
the amount of calculations performed. The data evalu-
ated in this study utilized 400 bootstrap iterations. That
number of iterations is shown to be adequate given the
coverage which is demonstrated. Future work is neces-
sary to determine the minimum number of bootstrap
iterations for the method. A test for convergence vs
number of iterations would be helpful to further refine
the method. Because of the relatively few assumptions
it requires, and the fidelity of its achieved coverage to
its nominal coverage for low harmonic data, we recom-
mend that bootstrap prediction and confidence bands
be the gold standard method for evaluating gait curve
data.

Appendix A

We describe the Bootstrap Method for finding pre-
diction bands based on data from n curves. The data
from the ith curve is denoted Yi(t1), . . . , Yi(tM) where,
for convenience, we assume a common number M of
points is observed on each curve during the gait cycle
and that t ranges from 0 to T, i.e.

05 t15 ···5 tM5T.

We regard the n curves as perturbations, in a sense
described below, of a true curve that can be represented
by the finite Fourier sum

f(t)=m+ %
K

k=1

�
ak cos

�2pkt
T

�
+b sin

�2pkt
T

��
(0.1)

where K is known. Thus m is the overall mean, for
example, and the form Eq. (0.1) asserts that the curve
starts and ends at the same height. In practice, rather
arbitrary curves can be accommodated by embedding
them in a smooth way so the extended curve exhibits
the symmetry properties that Eq. (0.1) entails.

An idealized version of the ith curve is viewed as
being derived from the fundamental curve Eq. (0.1) by
perturbing the coefficients of Eq. (0.1); this gives rise to
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fi(t)=mi+ %
K

k=1

�
ai,k cos

�2pkt
T

�
+bi,k sin

�2pkt
T

��
(0.2)

where mi, ai,l, bi,l,…, ai,K, bi,K are unknown curve-spe-
cific coefficients. The coefficients for the ith curve are
estimated by least squares assuming

Yi(tj)= fi(tj)+eij(15 j5M) (0.3)

is the model for the observed data where the eij are
uncorrelated, have mean zero and variance s2.

The vectors of fitted coefficients for the n curves,
Wi= (m̂i, âi,1, b. i,1,…, b. i,K)Ý for 15 i5n, are regarded
as independent draws from a (2K+1)-dimensional
multivariate distribution with unknown mean vector (m,
a1, b1,…, bK) and unknown covariance matrix �W.
Here Ý denotes the transpose of a vector or a matrix.
The sample mean of the Wi, W( =1/n �i=1

n Wi, is an
estimate of the underlying true coefficient vector (m, a1,
b1,…, bK). For example, the first component of W( is
�i=1

n m̂i/n which is the average overall estimated mean.
Similarly, the sample variance-covariance matrix of the
Wi, defined as

S. W=
1
n

%
n

i=1

(Wi−W( )Ý(Wi−W( ),

is an estimator (biased) of the population variance-co-
variance SW. Using these basic building blocks we
estimate the following two quantities. The ith curve at
t is estimated by f. i(t)=W i

Ýl(t) where

l(t)=
�

1, cos
�2p1t

T
�

, sin
�2p1t

T
�

,…, cos
�2pKt

T
�

sin
�2pKt

T
��

for 15 i5n. The true population curve at t, defined by
Eq. (0.1), is estimated by

f. (t)=W( Ýl(t) (0.4)

We use

ŝf. (t)=
l(t)ÝS. Wl(t). (0.5)

as a measure of the variability of f. (t).
The prediction and confidence bands can be con-

structed as follows. Let fn+1(t) denote a future draw
from the population mean curve that is defined by Eq.
(0.1) and let Yn+1(t) be an observed curve generated by
Eqs. (0.2) and (0.3). Given a desired confidence level
100(1−a)%, we chose the constant Cp so that

P
!

max
t

��f. n+1(t)− f. (t)�
ŝf. (t)

�
5Cp

"
=1−a. (0.6)

Then

f. (t)9Cp× ŝf. (t) (0.7)

is 100(1−a)% prediction band over [0, T ] for a new
curve.

Similarly if Cc is chosen so that

P
!

max
t

��f. (t)− f(t)�
ŝf. (t)

�
5Cc

"
=1−a, (0.8)

then

f. (t)9Cc× ŝf. (t) (0.9)

is a 100(1−a)% confidence band for f(t) over [0, T ].
The idea of the bootstrap is to chose Cp and Cc so

that approximate versions of the probabilities Eqs. (0.6)
and (0.8), respectively, are set equal to 1−a. These
approximations are obtained by replacing the true
stochastic mechanism by the empirical distribution
formed from the population of curves.

In more detail, the following process is repeated B
times, say, where B is large. In the bth cycle, 15b5B,
we select a sample of size n, with replacement, from the
population of the n original curves. Based on this
pseudo-sample the estimator Eq. (0.4) is calculated;
denote this quantity by f. b(t). We also calculate the
spread estimate (0.5) based on the pseudo-sample; de-
note the corresponding value by ŝ f. b(t). Then the proba-
bility in Eq. (0.6) is approximately

1
B

× %
B

b=1

�1
n

%
n

i=1

I
�

max
t

!�f. i(t)− f. b(t)�
ŝ f. b(t)

b

"
5Cp

�n
(0.10)

where I(E) is 1 or 0 according as event E does or does
not occur, respectively. In words, Eq. (0.10) is the
average, over the bootstrap replications, of the propor-
tion of the original data curves whose maximum stan-
dardized deviation from the bootstrap mean, f. b(t), is
less than or equal Cp. If Cp is chosen to make Eq. (0.10)
equal to 1−a, then the prediction limits Eq. (0.7) will
have approximate coverage 100(1−a)%.

In a similar way

1
B

× %
B

b=1

�
max

t

!�f. b(t)− f. (t)�
ŝ f. b(t)

b

"
5Cc

n
(0.11)

is an approximation of the left-hand side probability in
Eq. (0.8). Using Eq. (0.9) with Cc computed to make
Eq. (0.11) equal to 1−a gives an approximate 100(1−
a)% confidence band over [0, T ] for f(t).
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