
Thomas J. Santner
Brian J. Williams
William I. Notz

The Design and Analysis of

Computer Experiments

February 18, 2014

Springer

Use the template dedic.tex together with the

Springer document class SVMono for

monograph-type books or SVMult for

contributed volumes to style a quotation or a

dedication at the very beginning of your book

in the Springer layout

Preface

Use the template preface.tex together with the Springer document class SVMono

(monograph-type books) or SVMult (edited books) to style your preface in the

Springer layout.

A preface is a book’s preliminary statement, usually written by the author or ed-

itor of a work, which states its origin, scope, purpose, plan, and intended audience,

and which sometimes includes afterthoughts and acknowledgments of assistance.

When written by a person other than the author, it is called a foreword. The

preface or foreword is distinct from the introduction, which deals with the subject

of the work.

Customarily acknowledgments are included as last part of the preface.

Place(s), Firstname Surname

month year Firstname Surname

vii

Acknowledgements

Use the template acknow.tex together with the Springer document class SVMono

(monograph-type books) or SVMult (edited books) if you prefer to set your ac-

knowledgement section as a separate chapter instead of including it as last part of

your preface.

ix

Contents

1 Physical Experiments and Computer Experiments 1

1.1 Introduction . 1

1.2 Examples of Computer Models . 3

1.3 Inputs and Outputs of Computer Experiments 12

1.4 Objectives of Experimentation . 14

1.4.1 Introduction . 14

1.4.2 Research Goals for Homogeneous-Input Codes 15

1.4.3 Research Goals for Mixed-Inputs . 16

1.4.4 Experiments with Multiple Outputs . 19

1.5 Organization of the Book . 20

2 Stochastic Models for Computer Output . 23

2.1 Introduction . 23

2.2 Models Real-Valued Output . 26

2.2.1 The stationary GP model . 26

2.2.2 Non-stationary Model 1: Regression + stationary GP model 26

2.2.3 Non-stationary Model 2: Regression + var(x) × stationary

GP model ?? . 27

2.2.4 Treed GP model . 27

2.2.5 Composite GP (Convolution) Models 27

2.3 Models for Output having Mixed Qualitative and Quantitative Inputs 27

2.4 Models for Multivariate and Functional Computer Output 38

2.4.1 Reducing Functional Data to Multivariate Data 38

2.4.2 Constructive Models . 38

2.4.3 Separable Models (Conti and O’Hagan) 38

2.4.4 Basis Representations of Multivariate Output 38

2.4.5 Using the Correlation Function to Specify a GRF with

Given Smoothness Properties . 45

2.4.6 Hierarchical Gaussian Random Field Models 53

2.5 Chapter Notes . 54

xi

xii Contents

3 Predicting Output from Computer Experiments 55

3.1 Introduction . 55

3.2 Prediction Basics . 56

3.2.1 Classes of Predictors . 56

3.2.2 Best MSPE Predictors . 57

3.2.3 Best Linear Unbiased MSPE Predictors 64

3.3 Empirical Best Linear Unbiased Prediction . 67

3.3.1 Introduction . 67

3.3.2 Prediction When the Correlation Function Is

Unknown . 69

3.4 A Simulation Comparison of EBLUPs . 74

3.5 Prediction for Multivariate Output Simulators 87

3.6 Chapter Notes . 88

3.6.1 Proof That (3.2.21) Is a BLUP (page 66) 88

3.6.2 Proof That (3.3.4) Is a BLUP (page 68) 89

3.6.3 Implementation Issues . 90

3.6.4 Alternate Predictors . 92

4 Bayesian Prediction of Computer Simulation Output 93

4.1 Predictive Distributions . 93

4.1.1 Introduction . 93

4.1.2 Predictive Distributions When σ2
Z
, R, and r0 Are Known . . . 94

4.1.3 Predictive Distributions When R and r0 Are Known 100

4.1.4 Prediction Distributions When Correlation Parameters Are

Unknown . 102

5 Space-Filling Designs for Computer Experiments 107

5.1 Introduction . 107

5.1.1 Some Basic Principles of Experimental Design 107

5.1.2 Design Strategies for Computer Experiments 110

5.2 Designs Based on Methods for Selecting Random Samples 112

5.2.1 Designs Generated by Elementary Methods for

Selecting Samples . 113

5.2.2 Designs Generated by Latin Hypercube Sampling 114

5.2.3 Properties of Sampling-Based Designs 119

5.2.4 Extensions of Latin Hypercube Designs 122

5.3 Latin Hypercube Designs Satisfying Additional Criteria 125

5.3.1 Orthogonal Array-Based Latin Hypercube Designs 125

5.3.2 Orthogonal Latin Hypercube Designs 127

5.3.3 Symmetric Latin Hypercube Designs . 130

5.4 Designs Based on Measures of Distance . 132

5.5 Distance-based Designs for Non-rectangular Regions 138

5.6 Designs Obtained from Quasi-Random Sequences 141

5.7 Uniform Designs . 146

5.8 Chapter Notes . 152

Contents xiii

5.8.1 Proof That TL is Unbiased and of Theorem 5.1 152

5.8.2 The Use of LHDs in a Regression Setting 157

5.8.3 Other Space-Filling Designs . 158

7 Sensitivity Analysis and Variable Screening . 161

7.1 Introduction . 161

7.2 Classical Approaches to Sensitivity Analysis . 162

7.2.1 Sensitivity Analysis Based on Scatterplots and Correlations . 162

7.2.2 Sensitivity Analysis Based on Regression Modeling 163

7.3 Sensitivity Analysis Based on Elementary Effects 166

7.4 Global Sensitivity Analysis Based on a Functional ANOVA

Decomposition . 169

7.4.1 Main Effect and Joint Effect Functions 171

7.4.2 Functional ANOVA Decomposition . 175

7.4.3 Global Sensitivity Indices . 178

7.5 Estimating Effect Plots and Global Sensitivity Indices 185

7.5.1 Estimated Effect Plots . 186

7.5.2 Estimation of Sensitivity Indices . 189

7.5.3 Process-based Estimators of Sensitivity Indices 192

7.5.4 Process-based estimators of sensitivity indices 194

7.5.5 Formulae for the Gaussian correlation function 197

7.5.6 Formulae using the Bohman correlation function 198

7.6 Variable Selection . 200

7.7 Chapter Notes . 200

7.7.1 Elementary Effects . 200

7.7.2 Orthogonality of Sobol´ Terms . 201

7.7.3 Sensitivity Index Estimators for Regression Means 203

A List of Notation . 205

A.1 Abbreviations . 205

A.2 Symbols . 206

B Mathematical Facts . 209

B.1 The Multivariate Normal Distribution . 209

B.2 The Non-Central Student t Distribution . 211

B.3 Some Results from Matrix Algebra . 212

References . 214

To Gail, Aparna, and Claudia

for their encouragement and patience

1

Preface

Use the template preface.tex together with the Springer document class SVMono

(monograph-type books) or SVMult (edited books) to style your preface in the

Springer layout.

A preface is a book’s preliminary statement, usually written by the author or ed-

itor of a work, which states its origin, scope, purpose, plan, and intended audience,

and which sometimes includes afterthoughts and acknowledgments of assistance.

When written by a person other than the author, it is called a foreword. The

preface or foreword is distinct from the introduction, which deals with the subject

of the work.

Customarily acknowledgments are included as last part of the preface.

Place(s), Firstname Surname

month year Firstname Surname

–

1

Chapter 1

Physical Experiments and Computer

Experiments

1.1 Introduction

Historically, there has been extensive use of both physical experiments and, later,

stochastic simulation experiments in order to determine the impact of input variables

on outputs of scientific, engineering,or teachnological importance.

In the past 15 to 20 years, there has been an increasing use of computer codes

to infer the effect of input variables on such outputs. To explain their genesis, sup-

pose that a mathematical theory exists that relates the output of a complex physical

process to a set of input variables, e.g., a set of differential equations. Secondly,

suppose that a numerical method exists for accurately solving the mathematical sys-

tem. Typical methods for solving complex mathematical systems include finite ele-

ment (FE) and computational fluid dynamics (CFD) schemes. In other applications,

code output are simply extremely sophisticated simulations run to the point that the

simulation error is essentially zero. Assuming that sufficiently powerful computer

hardware and software exists to implement the numerical method, one can treat the

output of the resulting computer code as an experimental output corresponding the

inputs to that code; the result is a computer experiment that produces a “response”

corresponding to any given set of input variables.

This book describes methods for designing and analyzing research investigations

that are conducted using computer codes that are used either alone or in addition to

a physical experiment.

Historically, Statistical Science has been the scientific discipline that creates

methodology for designing empirical research studies and analyzing data from

them. The process of designing a study to answer a specific research question must

first decide which variables are to be observed and the role that each plays, eg, as an

explanatory variable or a response variable. Traditional methods of data collection

include retrospective techniques such as cohort studies and the case-control stud-

ies used in epidemiology. The gold standard data collection method for establishing

cause and effect relationships is the prospective designed experiment. Agricultural

field experiments were one of the first types of designed experiments. Over time,

1

2 1 Physical Experiments and Computer Experiments

many other subject matter areas and modes of experimentation have been devel-

oped. For example, controlled clinical trials are used to compare medical therapies

and stochastic simulation experiments are used extensively in operations research to

compare the performance of (well) understood physical systems having stochastic

components such as the flow of material through a job shop.

There are critical differences between data generated by a physical experiment

and data generated by a computer code that dictate that different methods must be

used to analyze the resulting data. Physical experiments measure a stochastic re-

sponse corresponding to a set of (experimenter-determined) treatment input vari-

ables. Unfortunately, most physical experiments also involve nuisance input vari-

ables that may or may not be recognized and cause (some of the) variation in the

experimental response. Faced with this reality, statisticians have developed a va-

riety of techniques to increase the validity of treatment comparisons for physical

experiments. One such method is randomization. Randomizing the order of apply-

ing the experimental treatments is done to prevent unrecognized nuisance variables

from systematically affecting the response in such a way as to be confounded with

treatment variables. Another technique to increase experimental validity is blocking.

Blocking is used when there are recognized nuisance variables, such as different lo-

cations or time periods, for which the response is expected to behave differently,

even in the absence of treatment variable effects. For example, yields from fields

in dryer climates can be expected to be different from those in wetter climates and

males may react differently to a certain medical therapy than females. A block is

a group of experimental units that have been predetermined to be homogeneous.

By applying the treatment in a symmetric way to blocks, comparisons can be made

among the units that are as similar as possible, except for the treatment of interest.

Replication is a third technique for increasing the validity of an experiment. Ad-

equate replication means that an experiment is run on a sufficiently large scale to

prevent the unavoidable “measurement” variation in the response from obscuring

treatment differences.

In some cases computer experimentation is feasible when physical experimenta-

tion is not. For example, the number of input variables may be too large to consider

performing a physical experiment, there may be ethical reasons why a physical ex-

periment cannot be run, or it may simply be economically prohibitive to run an ex-

periment on the scale required to gather sufficient information to answer a particular

research question. However, we note that when using only computer experiments to

determine the multivariate relationship between a set of inputs and a critical output

based on an assumed model that has no empirical verification is an extrapolation

and all extrapolations can be based on incorrect assumptions.

Nevertheless, the number of examples of scientific and technological develop-

ments that have been conducted using computer codes are many and growing. They

have been used to predict climate and weather, the performance of integrated cir-

cuits, the behavior of controlled nuclear fusion devices, the properties of thermal

energy storage devices, and the stresses in prosthetic devices. More detailed moti-

vating examples will be provided in Section 1.2.

1.2 Examples 3

In contrast to classical physical experiments, a computer experiment yields a

deterministic answer (at least up to “numerical noise”) for a given set of input con-

ditions; indeed, the code produces identical answers if run twice using the same set

of inputs. Thus, using randomization to avoid potential confounding of treatment

variables with unrecognized “noise” factors is irrelevant–only code inputs can af-

fect the code output. Similarly, blocking the runs into groups that represent “more

nearly alike” experimental units is also irrelevant. Indeed, none of the traditional

principles of blocking, randomization, and replication are of use in solving the de-

sign and analysis problems associated with computer experiments. However, we

still use the word “experiment” to describe such a code because the goal in both

physical and computer experiments is to determine which treatment variables affect

a given response and, for those that do, to quantify the details of the input-output

relationship.

In addition to being deterministic, the codes used in some computer experiments

can be time-consuming; in some finite element models, it would not be unusual for

code to run for 12 hours or even considerably longer to produce a single response.

Another feature of many computer experiments is that the number of input variables

can be quite large–15 to 20 or more variables. One reason for the large number of

inputs to some codes is that the codes allow the user to not only manipulate the

control variables (the inputs that can be set by an engineer or scientist to control the

process of interest) but also inputs that represent operating conditions and/or inputs

that are part of the physics or biology model being studied but that are known only

to the agreement of experts in the subject matter field. As examples of the latter

two types of inputs, consider biomechanics problem of determining the strain that

occurs at the bone–prosthesis boundary of a prosthetic knee. Of course, prosthesis

geometry is one input that determines the strain. But this output also depends on

the magnitude of the load (an operating condition input) and friction between the

prosthetic joint and the bone (a model-based input). Other examples of problems

with both engineering and other types of input variables are given in Section 2.1.

This book will discuss methods that can be used to design and analyze computer

experiments that account for their special features. The remainder of this chapter

will provide several motivating examples and an overview of the book.

1.2 Examples of Computer Models

This section sketches several scientific arenas where computer models are used.

Our intent is to show the breadth of application of such models and to provide

some feel for the types of inputs and outputs used by these models. The details of

the mathematical models implemented by the computer code will not be given, but

references to the source material are provided for interested readers.

Example 1.1 (A Physics-based Tower Model). Consider an experiment in which a

ball is dropped, not thrown, from an initial height x (in meters). The experimenter

measures the time (in seconds) from when the ball is dropped until it hits the ground,

4 1 Physical Experiments and Computer Experiments

say y(x). A computational simulator of this experiment can be derived from New-

ton’s Law with drag coefficient. Let s(τ) denote the position of the particle at time

τ and let θ denote the coefficient of drag. While the value of θ in the physical ex-

periment is unknown, assume that based on engineering experience, it is possible to

specify a prior distribution, π(θ), of likely values for θ. Then Newton’s law states

d2s(τ)

dτ2
= −1 − θ

(
ds(τ)

dτ

)
(1.2.1)

subject to the initial conditions s(0) = x and
ds(τ)

dτ
|x=0 = 0 . The first condition states

the initial height of the ball is x and the second condition states that the ball is

dropped rather than than thrown with some positive initial velocity. The computa-

tional model output η(x, θ) is the (smallest) zero of the equation

s(τ) = 0 . (1.2.2)

Table 1.1 lists data from a set of computational solutions to this model. The data

x θ η(x, θ)

0.042 0.125 1.6066

0.125 0.375 2.0309

0.000 0.583 1.6384

0.167 0.708 2.4639

0.083 0.875 2.2184

0.333 0.000 2.3094

0.208 0.208 2.1730

0.292 0.500 2.7144

0.375 0.792 3.4574

0.250 0.917 3.0891

0.583 0.0417 2.8543

0.417 0.292 2.8228

0.542 0.417 3.3511

0.500 0.625 3.6211

0.458 1.00 4.2778

0.708 0.167 3.2887

0.750 0.333 3.7132

0.667 0.542 3.9795

0.625 0.750 4.3771

0.792 0.833 5.3177

0.875 0.0833 3.4351

1.000 0.250 4.0449

0.833 0.458 4.2369

0.958 0.667 5.3178

0.917 0.958 6.3919

Table 1.1 Data from a set of computational simulations of the time for a ball to drop from a given

height x when the drag coefficient is θ.

1.2 Examples 5

from the computational model is shown in Figure 1.1. Notice that the (x, θ) inputs

‘cover’ the input space, that the drop time increases in both x and θ.

0 0.5 1
0

2

4

6

x

0 0.5 1

0

0.5

1

θ

x

0 0.5 1

2

4

6

x

D
ro

p
T

im
e

0 0.5 1

2

4

6

θ

D
ro

p
T

im
e

0 0.5 1
0

2

4

6

θ

2 4 6
0

2

4

6

8

Drop Time

Fig. 1.1 Matrix scatterplot of Tower Data.

Corresponding to the computational simulations are the results from six physical

experiments of timing a dropped ball from a given height

x Drop Time (sec.)

0.0 1.5929

0.2 2.1770

0.4 2.8706

0.6 3.8330

0.8 4.5965

1.0 4.7509

Table 1.2 Observed times for a ball to drop a given height x.

The objectives from this set of experiments might be several fold: (1) to esti-

mate the “true” drag coefficient (or provide a distribution of values consistent with

the data), (2) to predict the Drop Time at an untested height, (3) to quantify the

uncertainty in the predicted values in (2).

Example 1.2 (Stochastic Evaluation of Prosthetic Devices). see Kevin paper in liter-

ature In this example taken from Ong et al (2008), a three-dimensional 14,000-node

finite element model of the pelvis was used to evaluate the inpact of biomechanical

engineering design variables on the performance of an acetabular cup under a distri-

6 1 Physical Experiments and Computer Experiments

bution of patient loading environments and deviations from ideal surgical insertion

parameters.

previously developed in detail

Design and environmental variables, their notation, ranges, and distributions 2

denotes the chi-square distribution with degrees of freedom; N(2, ?) denotes the nor-

mal Gaussian distribution with mean and variance σ2; U(a, b) denotes the uniform

distribution over the interval (a, b), DU(a1, . . . , ad) denotes the discrete uniform dis-

tribution over the values a1 , . . . , ad; Tr(a, b) denotes the triangular distribution over

(a, b) centered at a + b/2;

Example 1.3 (Evolution of Fires in Enclosed Areas). Deterministic computer mod-

els are used in many areas of fire protection design including egress (exit) analysis.

We describe one of the early “zone computer models” that is used to predict the fire

conditions in an enclosed room. Cooper (1980) and Cooper and Stroup (1985) pro-

vided a mathematical model and its implementation in FORTRAN for describing

the evolution of a fire in a single room with closed doors and windows that contains

an object at some point below the ceiling that has been ignited. The room is assumed

to contain a small leak at floor level to prevent the pressure from increasing in the

room. The fire releases both energy and hot combustion by-products. The rate at

which energy and the by-products are released is allowed to change with time. The

by-products form a plume which rises towards the ceiling. As the plume rises, it

draws in cool air, which decreases the plume’s temperature and increases its volume

flow rate. When the plume reaches the ceiling, it spreads out and forms a hot gas

layer whose lower boundary descends with time. There is a relatively sharp inter-

1.2 Examples 7

face between the hot upper layer and the air in the lower part of the room, which in

this model is considered to be at air temperature. The only interchange between the

air in the lower part of the room and the hot upper layer is through the plume. The

model used by these programs can therefore be described as a two “zone” model.

The Cooper and Stroup (1985) code is called ASET (Available Safe Egress

Time). Walton (1985) implemented their model in BASIC, calling his computer

code ASET-B; he intended his program to be used in the first generation of personal

computers available at that time of its development. ASET-B is a compact, easy to

run program that solves the same differential equations as ASET using a simpler

numerical technique.

The inputs to ASET-B are

• the room ceiling height and the room floor area,

• the height of the burning object (fire source) above the floor,

• a heat loss fraction for the room (which depends on the insulation in the room,

for example),

• a material-specific heat release rate, and

• the maximum time for the simulation.

The program outputs are the temperature of the hot smoke layer and its distance

above the fire source as a function of time.

Since these early efforts, computer codes have been written to model wild-

fire evolution as well as fires in confined spaces. As typical examples of this

work, we point to Lynn (1997) and Cooper (1997), respectively. The publications

of the Building and Fire Research Laboratory of NIST can be found online at

http://fire.nist.gov/bfrlpubs/. Finally, we mention the review article by

Berk et al (2002) which describes statistical approaches for the evaluation of com-

puter models for wildfires. Sahama and Diamond (2001) give a case study using

the statistical methods introduced in Chapter 3 to analyze a set of 50 observations

computed from the ASET-B model.

To provide a sense of the effect of each of these variables on the evolution of

the fire, we fixed the heat release rate to correspond to fire material that constitutes a

“semi-universal” fire; this heat release profile corresponds to a fire in a “fuel package

consisting of a polyurethane mattress with sheets and fuels similar to wood cribs and

polyurethane on pallets and commodities in paper cartons stacked on pallets.” (Birk

(1997)). Then we varied the remaining four factors using a “Sobol´ design” (Sobol´

designs are described in Section ??). We computed the time, to the nearest second,

for the fire to reach five feet above the burning fuel package, the fire source.

Scatterplots were constructed of each input versus the time required by hot smoke

layer to reach five feet above the fire source. Only room area showed strong visual

associations with the output; Figure 1.2 shows this scatterplot (see also Figure 3.10

for all four plots). This makes intuitive sense because more by-product is required

to fill the top of a large room and hence, longer times are required until this layer

reaches a point five feet above the fire source. The data from this example will be

used later to illustrate several analysis methods.

Example 1.4 (Turbulent Mixing). BJW—references???

8 1 Physical Experiments and Computer Experiments

Room Area (sq. ft.)

T
im

e
to

 r
ea

ch
 5

 fe
et

 (
se

c.
)

100 150 200 250

30
40

50
60

70

Fig. 1.2 Scatterplot of room area versus the time for the hot smoke layer to reach five feet above

the fire source.

Example 1.5. “Structural performance is a function of both design and environmen-

tal variables. Hip resurfacing design variables include the stem-bone geometry and

the extent of fixation, and environmental variables include variations in bone struc-

ture, bone modulus, and joint loading. Environmental variables vary from individ-

ual to individual as well as within the same individual over time, and can be treated

stochastically to describe a population of interest.”

see paper in literature

Example 1.6 (Qualitative Inputs).

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J. (2006),

Building Surrogate Models Based on Detailed and Approximate Simulations,ASME

Journal of Mechanical Design, 128, 668–677.

Example 1.7 (Formation of Pockets in Sheet Metal). Montgomery and Truss (2001)

discussed a computer model that determines the failure depth of symmetric rectan-

gular pockets that are punched in automobile steel sheets; the failure depth is the

1.2 Examples 9

depth at which the sheet metal tears. Sheet metal, suitably formed in this manner,

is used to fabricate many parts of automobiles. This application is but one of many

examples of computer models used in the automotive industry.

Fig. 1.3 Top view of the pocket formed by a punch and die operation. The floor of pocket is the

innermost rectangle. The regions R, s, and r correspond to the similarly labeled regions in the side

view.

Fig. 1.4 Side view of part of a symmetric pocket formed by a punch and die operation. The angled

side wall is created by the same fillet angle at the top by the die and at the bottom by the edge of

the punch.

10 1 Physical Experiments and Computer Experiments

Rectangular pockets are formed in sheet metal by pressing the metal sheet with

a punch which is a target shape into a conforming die. There are six input variables

to the Montgomery and Truss (2001) code, all of which are engineering design

variables. These variables can either be thought of as characteristics of the punch/die

machine tool used to produce the pockets or, in most cases, as characteristics of the

resulting pockets.

Five of the variables can easily be visualized in terms of the pocket geometry.

In a top view of the pocket, Figure 1.3 illustrates the length l and the width w of

the rectangular pocket (defined to omit the curved corner of the pocket). In a side

view of the pocket, Figure 1.4 shows the fillet radius f , which is the radius of the

circular path that the metal follows as it curves from the flat upper metal surface to

the straight portion of the pocket wall; this region is denoted R in both the side and

top views of the pocket. The same fillet radius is followed as the straight portion

of the pocket wall curves in a circular manner to the pocket floor; this region is

denoted by r in both views. Viewed from the top in Figure 1.3, the clearance is

the horizontal distance c during which the angled side wall descends vertically to

the pocket floor in Figure 1.4. In terms of the punch/die manufacturing tool, the

clearance is the distance between the punch and the die when the punch is moved

to its maximum depth within the die; the distance between the two tool components

is constant. Lastly, the punch plan view radius p is illustrated in Figure 1.3. The

lock bead distance, shown in Figure 1.4, is a distance d measured away from the

pocket edge on the top metal surface; the machine tool does not allow stretching of

the sheet metal beyond the distance d from the pocket edge.

To provide a sense of the (marginal) effect of each of these variables on the fail-

ure depth, we plotted the failure depth versus each of the six explanatory variables

for the set of 234 runs analyzed by Montgomery and Truss (2001). Two of these

scatterplots are shown in Figure 1.5; they are representative of the six marginal scat-

terplots. Five variables are only weakly related to failure depth and the panel in

Figure 1.5 showing failure depth versus fillet radius is typical of these cases. One

variable, clearance, shows a strong relationship with failure depth.

Example 1.8 (Other Examples).

The purpose of this subsection is to sketch several applications of computer

models that involve large numbers of input variables compared with the models

described in Subsections 1.3–??. These examples will also serve to broaden the

reader’s appreciation of the many scientific and engineering applications of such

models. Finally, as an additional source of motivating examples, we again remind

the reader of Berk et al (2002), who report on a workshop that discussed computer

models in four diverse areas: transportation flows, wildfire evolution, the spatio-

temporal evolution of storms, and the spread of infectious diseases.

Booker et al (1997) describe a project to design an optimally shaped helicopter

blade. While the thrust of their report concerned the development of an optimization

algorithm that was used to minimize a function of the computer model outputs, their

application is of interest because the engineering specification of the rotor required

31 design variables. Their specific objective function was a measure of the rotor

vibration that combined the forces and moments on the rotor, these latter quantities

1.2 Examples 11

Clearance (mm)

F
ai

lu
re

 D
ep

th

0 100 200 300 400

0
50

10
0

20
0

30
0

Fillet Radius (mm)

F
ai

lu
re

 D
ep

th

5 10 15 20

0
50

10
0

20
0

30
0

Fig. 1.5 Top panel—scatterplot of failure depth (millimeters) versus clearance for 234 runs of the

computer code described in Subsection 1.3; Bottom panel—failure depth versus fillet radius for

same data.

being calculated by the computer code. Each run of the computer code required very

little time (10-15 minutes). However, the computer code provided a much less accu-

rate solution of the mathematical equations that describe the forces and moments on

the rotor than did the finite element code of Chang et al (2001) for their application.

This circumstance raises the question of how a fast and slower, gold standard code

for the same output can be combined. This issue will be addressed in Section ??.

Section ?? will provide other information about statistical approaches to combining

information from multiple sources.

12 1 Physical Experiments and Computer Experiments

We end this section with a description of how computer codes have played an

important role in public policy decision making. Lempert et al (2002) provide an

example of such application. The objective is to contrast the effects of several na-

tional policies for curbing the effect of greenhouse gases based on an “integrative”

model of the future that links the world economy to the population and to the state of

the environment. The model they utilized, the so-called Wonderland model, quan-

tifies the state of the future over a window of typically 100 years, using several

measures, one of which is a “human development index.” The model is integrative

in that, for example, the pollution at a given time point depends on the user-specified

innovation rate for the pollution abatement, the current population, the output per

capita, environmental taxes, and other factors. The human development index is a

weighted average of a discounted annual improvement of four quantities including,

for example, the (net) output per capita. There are roughly 30 input variables. Dif-

ferent public policies can be specified by some of the inputs while the remaining

input variables determine the different initial conditions and evolution rates.

1.3 Inputs and Outputs of Computer Experiments

The purpose of this section is to describe the types of inputs and outputs that occur

in computer experiments. We frame this classification to the more familiar setting

of physical experiments. Recall that the input variables (factors) to a physical exper-

iment can be grouped as follows:

• Treatment inputs whose impact on the output response is of primary scientific

interest,

• Blocking factors are variables that can represent the effect of different environ-

mental conditions. Blocking factors can also describe natural environmental vari-

ation in the experimental units.

• Unrecognized factors whose presence can bias the observed input/output rela-

tionship unless randomization is used to to distribute their effect as “measure-

ment error.”

Furthermore, we view the output of a randomized physical experiment as being a

noisy version of the true input/ouput relationship.

The inputs to computer experiments can similarly be classified according the role

they play in the code with the exception that there are not “unrecognized” treatment

factors that potentially cause bias. However, the output of computer experiments,

being based on a mathematical model of the input/output relationship, can exhibit

bias because either the mathematical model omits elements of the physics or biology

that charactize this relationship and/or the numerical method used to implement the

mathematical model lacks accuracy for some subdomain of the input space.

To fix ideas, we denote the output of the computer code by x. There are four

types of inputs that we distinguish, not all of which need be present in any appli-

cation. The first type of input variable that we distinguish is a control variable. If

1.3 Types of Computer Experiments 13

the output of the computer experiment is some performance measure of a product or

process, then the control variables are those variables that can be set by an engineer

or scientist to “control” the product or process. Some experimenters use the terms

engineering variables or manufacturing variables rather than control variables. We

use the generic notation xc to denote control variables. Control variables are present

in physical experiments as well as in many computer experiments.

need additional examples based on the final models that we use As examples

of control variables, we mention the dimensions b and d of the bullet tip prosthesis

illustrated in Figure ?? (see Subsection ??). Another example is given by Box and

Jones (1992) in the context of a hypothetical physical experiment to formulate (“de-

sign”) the recipe for a cake. The goal was to determine the amounts of three baking

variables to produce the best tasting cake: flour, shortening, and egg; hence, these

are control variables. The physical experiment considered two additional variables

that also affect the taste of the final product: the time at which the cake is baked and

the oven temperature. Both of the latter variables are specified in the baking recipe

on the cake box. However, not all bakers follow the box directions exactly and even

if they attempt to follow them precisely, ovens can have true temperatures that differ

from their nominal settings and timers can be systematically off or be unheard when

they ring.

again, we need additional examples based on the final models that we use

The variables, baking time and oven temperature, are examples of environmental

variables, a second type of variable that can be present in both computer and physi-

cal experiments. In general, environmental variables affect the output y(·) but depend

on the specific user or on the environment at the time the item is used. Environmen-

tal variables are sometimes called noise variables. We use the notation xe to denote

the vector of environmental variables for a given problem. In practice, we typically

regard environmental variables as random with a distribution that is known or un-

known. To emphasize situations where we regard the environmental variables as

random, we use the notation Xe. The hip prosthesis example of Chang et al (1999)

illustrates a computer experiment with environmental variables (see Subsection ??);

both of their outputs depended on the magnitude and direction of the force exerted

on the head of the prosthesis. These two variables were patient specific and de-

pended on body mass and activity. They were treated as having a given distribution

that was characteristic of a given population.

In addition to control and environmental variables, there is a third category of

input variable that sometimes occurs. This third type of input variable describes the

uncertainty in the mathematical modeling that relates other inputs to output(s). As

an example, O’Hagan et al (1999) consider a model for metabolic processing of

U235 that involves various rate constants for elementary conversion processes that

must be known in order to specify the overall metabolic process. In some cases, such

elementary rate constants may have values that are unknown or possibly there is a

known (subjective) distribution that describes their values. We call these variables

model variables and denote them by xm. In a classical statistical setting we would

call model variables “model parameters” because we use the results of a physical

14 1 Physical Experiments and Computer Experiments

experiment, the ultimate reality, to estimate their values. Some authors call model

variables “tuning parameters.”

1.4 Objectives of Experimentation

• Prediction of the output of the computer code at a point, over a region, (eg., the

entire input domain)

• Calibration of the output of a computer simulation model to physical experimen-

tal data

• Set tuning parameters based on physical experimental data

• Prediction of output at a given (set) of inputs based on the “true” input-ouput

relationship x

• Assessment of the uncertainty in the predicted output (computer code; true input-

output relationship)

• Prediction of functionals of computer code output–means, percentiles (incuding

extrema), IQR, all inputs that produce a given value of the output.

1.4.1 Introduction

This chapter describes some common research objectives that when one is employ-

ing a computer experiment, either alone or in conjunction with a physical experi-

ment. Initially we consider the case of a single real-valued output y(·) that is to be

evaluated at input training sites x1, . . . , xn. We let ŷ(x) denote a generic predictor of

y(x) and consider goals for two types of inputs. In the first setting, referred to as a

homogeneous-input, all inputs of x are of the type, i.e., either control variables or

environmental variables or model variables. In the second setting, referred to as a

mixed-input, x contains at least two of the three different types of input variables:

control, environmental, and model. Finally, in Subsection 1.4.4, we outline some

typical goals when there are several outputs. In all cases there can be both “local”

and “global” goals that may be of interest.

The following section describes several fundamental goals for computer exper-

iments depending on which types of variables are present and the number of re-

sponses that the code produces. For example, if the code produces a single real-

valued response that depends on control and environmental variables, then we use

the notation y(xc, Xe) to emphasize that the propagation of uncertainty in the envi-

ronmental variables Xe must be accounted for. In some cases there may be multiple

computer codes that produce related responses y1(·), . . . , ym(·) which either repre-

sent competing responses or correspond to “better” and “worse” approximations to

the response. For example, if there are multiple finite element analysis codes based

on greater or fewer node/edge combinations to represent the same phenomenon,

then one might hope to combine the responses to improve prediction. Another al-

1.2 Objectives of Experimentation 15

ternative is that y1(·) represents the primary object of interest while y2(·), . . . , ym(·)

represent “related information”; for example, this would be the case if the code pro-

duced a response and vector of first partial derivatives. A third possibility is when

the yi(·) represent competing objectives; in this case, the goal might be to optimize

one response subject to minimum performance standards on the remaining ones.

Following the description of experimental goals, we summarize the basic issues

in modeling computer output. Then we will be prepared to begin Chapter 3 on the

first of the two basic issues considered in this book, that of predicting y(·) at (a new)

input x0 based on training data (x1, y(x1)), . . . , (xn, y(xn)). Chapter 4 will address the

second issue, the design problem of choosing the input sites at which the computer

model should be run.

1.4.2 Research Goals for Homogeneous-Input Codes

First, suppose that x consists exclusively of control variables, i.e., x = xc. In this

case one important objective is to predict y(x) “well” for all x in some domain X.

There have been several criteria used to measure the quality of the prediction in an

“overall” sense. One appealing intuitive basis for judging the predictor ŷ(x) is its

integrated squared error

∫

X

[̂
y(x) − y(x)

]2
w(x) dx, (1.4.1)

where w(x) is a nonnegative weight function that quantifies the importance of each

value in X. For example, w(x) = 1 weights all parts of X equally while w(x) =

IA(x), the indicator function of the set A ⊂ X, ignores the complement of A and

weights all points inA equally.

Unfortunately, (1.4.1) cannot be calculated because y(x) is unknown. However,

later in Chapter 5 we will replace
[̂
y(x) − y(x)

]2
by a posterior mean squared value

computed under a certain “prior” model for y(x) and obtain a quantity that can be

computed (see Section 5.2 for methods of designing computer experiments in such

settings).

The problem of predicting y(·) well over a region can be thought of as a global

objective. In contrast, more local goals focus on finding “interesting” parts of the

input space X. An example of such a goal is to identify (any) x, where y(x) equals

some target value. Suppose

L(t0) = {x ∈ X | y(x) = t0}

denotes the “level set” of input values where y(·) attains a target value t0. Then we

wish to determine any input x where y(·) attains the target level, i.e., any x ∈ L(t0).

Another example of a local goal is to find extreme values of y(·). Suppose

M =
{
x ∈ X | y(x) ≥ y(x⋆) for all x⋆ ∈ X

}
≡ arg max y(·)

16 1 Physical Experiments and Computer Experiments

is the set of all arguments that attain the global maximum of y(x). Then an analog of

the level set problem is to find a set of inputs that attain the overall maximum, i.e.,

to determine any x ∈ M. The problem of finding global optima of computer code

output has been the subject of much investigation (?, Bernardo et al (1992), Mockus

et al (1997), Jones et al (1998), ?).

There is a large literature on homogeneous-input problems when x depends only

on environmental variables. Perhaps the most frequently occurring application is

when the environmental variables are random inputs with a known distribution and

the goal is determine how the variability in the inputs is transmitted through the

computer code. In this case we write x = Xe using upper case notation to emphasize

that the inputs are to be treated as random variables and the goal is that of find-

ing the distribution of y(Xe). This problem is sometimes called uncertainty analysis

(?, ?, Helton (1993), O’Hagan and Haylock (1997), and O’Hagan et al (1999) are

examples of such papers). Also in this spirit, McKay et al (1979) introduced the

class of Latin hypercube designs for choosing the training sites Xe at which to eval-

uate the code when the problem is to predict the mean of the y(Xe) distribution,

E{y(Xe)}. The theoretical study of Latin hypercube designs has established a host of

asymptotic and empirical properties of estimators based on them (?, ?, ?, ?, ?) and

enhancements of such designs (?, ?, ?, ?, ?).

The third possibility for homogeneous-input is when y(·) depends only on model

variables, x = xm. Typically in such a case, the computer code is meant to de-

scribe the output of a physical experiment but the mathematical modeling of the

phenomenon involves unknown parameters, often unknown rate or physical con-

stants. In this situation the most frequently discussed objective in the computer ex-

periments literature is that of calibration. Calibration is possible when the results of

a physical experiment are available whose response is the physical phenomenon that

the computer code is meant to model. The goal is to choose the model variables xm

so that the computer output best matches the output from the physical experiment

(examples are ?, ?, ?, and the references therein).

1.4.3 Research Goals for Mixed-Inputs

Mixed-inputs can arise from any combination of control, environmental, and model

variables. We focus on what is arguably the most interesting of these cases, that of

x consisting of both control and environmental variables. In the problems described

below, the environmental variables will be assumed to have a known distribution,

i.e., x = (xc, Xe) where Xe has a known distribution. There are related problems for

other mixed-input cases.

In this case, for each xc, y(xc, Xe) is a random variable with a distribution that

is induced by the distribution of Xe. The y(xc, Xe) distribution can change as xc

changes. As discussed above for the homogeneous-input case x = Xe, attention is

typically focused on some specific aspect of this induced distribution. For example,

recall the study of Chang et al (1999) for designing a hip prosthesis that was in-

1.2 Objectives of Experimentation 17

troduced in Section 2.1. In their situation, y(xc, xe) was the maximum strain at the

bone-implant interface; it depended on the engineering variables, xc, that specified

the geometry of the device, and on the environmental variables xe, consisting of

the force applied to the hip joint and the angle at which it is applied. Chang et al

(1999) considered the problem of finding engineering designs xc that minimized the

mean strain where the mean is taken with respect to the environmental variables. Of

course, this is equivalent to maximizing the negative of the mean strain and for def-

initeness, we describe all optimization problems below as those of finding maxima

of mean functions.

To describe this, and related goals, in a formal fashion, let

µ(xc) = E {y(xc, Xe)} (1.4.2)

denote the mean of y(xc, Xe) with respect to the distribution of X
¯

e. Similarly define

(implicitly) the upper alpha quantile of the distribution of y(xc, Xe), denoted by ξα =

ξα(xc), as

P {y(xc, Xe) ≥ ξα} = α

(assuming for simplicity that there is a unique such upper α quantile). For example,

the notation ξ.5(xc) denotes the median of the distribution of y(xc, Xe), which is a

natural competitor of the mean, µ(xc), when y(xc, Xe) has a skewed distribution.

With this setup, it is possible to describe analogs for µ(xc), of the three goals

stated above for y(xc). If the distribution of y(xc, Xe) is skewed, the objectives de-

scribed below might better be stated in terms of the median ξ.5(xc). Let µ̂(xc) denote

a generic predictor of µ(xc). The analog of predicting y(·) well over its domain is to

predict µ(xc) well over the control variable domain in the sense of minimizing

∫ [
µ(xc) − µ̂(xc)

]2
w(xc) dxc. (1.4.3)

To solve this problem, one must not only choose a particular predictor µ̂(xc) of µ(xc),

but also the set of input training sites (xc, xe) on which to base the predictor. As in

the case of (1.4.1), the criterion (1.4.3) cannot be computed, but a Bayesian analog

that has a computable mean will be introduced in Chapter 5.

The parallel of the problem of finding a control variable that maximizes y(xc) is

that of determining an xc that maximizes the mean output µ(xc), i.e., finding an xM
c

that satisfies

µ(xM
c) = max

xc

µ(xc). (1.4.4)

Similarly, a parallel to the problem of finding xc to attain target y(·) values is straight-

forward to formulate for µ(xc).

Additional challenges occur in those applications when the distribution of Xe

is not known precisely. To illustrate the consequences of such a situation, suppose

that xM
c maximizes EGN {y(xc, Xe)} for a given nominal Xe distribution, GN . Now

suppose, instead, that G , GN is the true Xe distribution. If

18 1 Physical Experiments and Computer Experiments

EG{y(xM
c , Xe)} ≪ max

xc

EG{y(xc, Xe)}, (1.4.5)

then xM
c is substantially inferior to any x⋆c that achieves the maximum in the right-

hand side of (1.4.5). From this perspective, a control variable xc can be thought of

as being “robust” against misspecification of the Xe distribution if xc comes close

to maximizing the mean over the nominal Xe distribution and xc is never far from

achieving the maximum on the right-hand side of (1.4.5) for alternative Xe distribu-

tions, G. There are several formal methods of defining a robust xc that heuristically

embody this idea.

The classical method of defining a robust xc is by a minimax approach (?). Given

a set G of possible environmental variable distributions (that includes a “central,”

nominal distribution GN), let

µ(xc,G) = EG{y(xc, Xe)}

denote the mean of y(xc, Xe) when Xe has distribution G ∈ G. Then

min
G∈G

µ(xc,G)

is the smallest mean value for y(xc, ·) that is possible when Xe distributions come

from G. We say x
G
c is a G-robust design provided

min
G∈G

µ(xGc ,G) = max
xc

min
G∈G

µ(xc,G).

Philosophically,G-robust designs can be criticized because they are pessimistic; x
G
c

maximizes a worst-case scenario for the mean of y(xc, Xe). In addition, one is faced

with the challenge of specifying a meaningful G. Finally, there can be substantial

computational problems determining G-robust designs.

An alternative definition, Bayesian in spirit, assumes that it is possible to place a

distribution π(·) on the G ∈ G where G is the known set of environmental distribu-

tions. In the most straightforward case, the distributions in G can be characterized

by a finite vector of parameters θ. Suppose that π(·) is a prior density over the θ

values. We define xπc to be π(·)-robust provided

∫
µ(xπc , θ)π(θ) dθ = max

xc

∫
µ(xc, θ)π(θ) dθ.

A critique of π(·)-robust designs is that, in addition to the difficulty of specifying a

meaningful G, one must also determine a prior π(·). However, π(·)-robust designs

are typically easier to compute than G-robust designs.

A third, more heuristic definition of a robust xc requires only a nominal Xe dis-

tribution, and neither a class G of alternative distributions nor a prior π(·) need be

specified. This last definition is based on the following observation. Suppose that for

a given xc, y(xc, xe) is (fairly) “flat” in xe; then the mean of y(xc, Xe) will “tend” to

be independent of the choice of Xe distribution. Assuming that we desire the mean

1.2 Objectives of Experimentation 19

µ(xc) of y(·) under the nominal distribution to be large, a robust xc maximizes µ(xc)

among those xc for which y(xc, xe) is flat. We call such an xc a M-robust design.

To define this notion formally, suppose that each component of Xe has a bounded

support; the Xe has support on a bounded hyper-rectangle, say Xi[ai, bi]. Let

σ2(xc) =
1

Πi(bi − ai)

∫
y2(xc, xe) dxe −

(
1

Πi(bi − ai)

∫
y(xc, xe) dxe

)2

be the “variance” of y(xc, Xe) with respect to a uniform distribution on Xe. We define

xM
c to be M-robust provided xM

c maximizes

µ(xc)

subject to

σ2(xc) ≤ B.

Here B is an absolute bound on the variability of y(xc, ·). An alternative, natural

constraint is

σ2(xc) ≤ max
x⋆c ∈Xc

σ2(x⋆c) × B,

where B is now a relative bound that is < 1. Because B < 1, this second formulation

has the theoretical advantage that the feasible region is always nonempty whereas in

the former specification one may desire that the variance be no greater than a certain

bound B, but there need not exist control variables xc that achieve this target value.

Using the relative constraint has the computational disadvantage that the maximum

variance must be determined. Alternatively, and perhaps more in keeping with the

quality control concept of having a “target” mean, we define xV
c to be V-robust if it

minimizes σ2(xc) subject to a constraint on µ(xc). ? discuss the sequential design of

computer experiments to find M-robust and V-robust choices of control variables.

1.4.4 Experiments with Multiple Outputs

To fix ideas, suppose that y1(·), . . . , ym(·) are the computed outputs. There are at

least three different settings that lead to such a situation. First, the outputs can repre-

sent multiple codes for the same quantity; for example, ? study multiple codes that

represent coarser and finer finite element descriptions for the same response.

A second setting that leads to multiple outputs is when the yi(·) are competing re-

sponses from different codes; in prosthesis design we desire to maximize the strain

at the prosthesis–bone interface so that bone resorption does not occur and simul-

taneously minimize (or at least bound) the side to side “toggling” of the implant.

The two objectives, maximizing strain and minimizing toggling, represent compet-

ing design goals. A third setting that leads to multiple outputs is when a single code

produces yi(·) that are related to one another. As an example, ? and ? consider the

prediction of y(x) for codes that produce y(·) and all its first partial derivatives for

each input site x. Thus we regard y1(x) = y(x), the original output, and y2(x), . . . ,

20 1 Physical Experiments and Computer Experiments

ym(x) as the values of the partial derivatives of y(x) with respect to each compo-

nent of x. These derivatives provide auxiliary information that permits more precise

prediction of y(x) than that based on y(·) alone.

The modeling of multiple yi(·) depends on which scenario above holds, as do the

possible scientific or engineering objectives. For example, when y2(x), . . . , ym(x)

represent auxiliary information about y1(x), the goal might simply be to use the

additional information to better predict y1(·). To continue the example introduced

in the previous paragraph, ? and ? show how to model the output from codes that

produce a response y(·) and the partial derivatives of y(·). They then use these models

to derive (empirical) best linear unbiased predictors of y(·) at new sites x0 based on

all the responses. See Section 3.5 for a discussion of modeling multiple responses.

Now consider the scenario where x = xc, y1(·) is the response of primary interest,

and y2(·), . . . , ym(·) are competing objectives. Then we can define a feasible region

of xc values by requiring minimal performance standards for y2(xc), . . . , ym(xc). For-

mally, an analog of the problem of minimizing y(·) is

minimize y1(xc)

subject to

y2(xc) ≥ M2

...

ym(xc) ≥ Mm.

Here Mi is the lower bound on the performance of yi(·) that is acceptable. If in

addition to control variables, x also contains environmental variables, then we can

replace each yi(xc) above with µi(xc) = E{yi(xc, Xe)}. In cases where x = xe, a typi-

cal objective is to find the joint distribution of (y1(Xe), . . . , ym(Xe)) or, even simpler,

that of predicting the mean vector (E{y1(Xe)}, . . . , E{ym(Xe)}).
Lastly, if the yi(·) represent the outputs of different codes of varying accuracy

for the same response, then a typical goal is to combine information from the var-

ious outputs to better predict the true response. Specification of this goal depends

on identifying the “true” response; we postpone a discussion of this idea until we

discuss modeling multiple response output in Section 3.5.

1.5 Organization of the Book

The remainder of the book is organized as follows. Chapter 2 outlines the conceptual

framework for thinking about the design and analysis of computer experiments. This

includes a classification of the types of input variables that can affect the output of

a computer code, a summary of research goals when conducting a computer exper-

iment, and an introduction to Gaussian random field models as a description of the

output from a computer experiment. Using the Gaussian random model, Chapter 3

introduces methods that can be used for predicting the output of computer codes

based on training data, plus methods of assessing the uncertainty in these predic-

tions. The chapter compares the prediction methods and presents our recommenda-

1.5 ORGANIZATION OF THE BOOK 21

tions concerning their use. Chapter ?? introduces several additional topics including

the use of predictive distributions and prediction based on multiple outputs. Chap-

ter 4 and Chapter 5 are concerned with experimental design, i.e., the selection of

the input sites at which to run code. Chapter 4 begins this discussion by considering

space-filling designs, meaning designs that spread observations evenly throughout

the input region. Among the designs examined are those based on simple random

sampling, those based on stratified random sampling, Latin hypercube designs, or-

thogonal arrays, distance-based designs, uniform designs, and designs that combine

multiple criteria. Sobol´ designs, grid, and lattice designs are briefly mentioned at

the end of the chapter. Chapter 5 considers designs based on statistical criteria such

as maximum entropy and mean squared error of prediction. This chapter also con-

siders sequential strategies for designing computer experiments when the goal is

to optimize the output. Finally, Chapter ?? discusses some issues of validation of

computer experiments using physical and other experiments as well as sensitivity

analysis.

PErK software allows readers to fit most of the models discussed in this book.

PErK, written in C and using the freely available GSL C software library, can be

obtained at either

http://www.stat.ohio.edu/˜comp_exp

http://www.springer-ny.com/

Appendix ?? describes the syntax used by PErK and provides examples of its use to

fit a variety of models.

We have added Notes sections at the end of the chapters that describe develop-

ments beyond the basic ones given in this book. We recognize that the limitation

in implementing many of the procedures we describe in this text is the availabil-

ity of certain tabled constants. Thus, in addition to providing tables to implement

the procedures, we also provide a number of FORTRAN programs to supplement

our tables. In addition, we describe other public domain programs valuable for im-

plementing certain selection, screening and simultaneous confidence interval proce-

dures and state how to obtain them.

Chapter 2

Stochastic Models for Computer Output

2.1 Introduction

Recall from Chapter 1 that we will let input x denote a generic input to our com-

puter experiment and y(x) denote the associated output. The purpose of this chapter

is to introduce several classes of random function models for y(x) that will serve

as the fundamental building blocks of the interpolators, experimental designs, cal-

ibration and tuning methodologies that will be introduced in later chapters. Some

readers will regard our viewpoint about such processes as being Bayesian; however,

computer experiments represent a highly nonparametric setting and careful eliciting

a prior for the output of a black box code is much more difficult than, say, eliciting

the prior for the mean output of a regression or the rate of change of the mean corre-

sponding to a unit change in a regression function (see Oakley (2002) and Reese et al

(2000) for advice and case-studies about the formation of prior distributions). Thus

other readers may find it more intuitive to think about the process model assumption

as an extension of the more familiar regression model.

Our viewpoint in this discussion is Bayesian because this approach is philosoph-

ically more satisfying in, for example, its interpretation of estimated standard errors

for predictors. From the Bayesian viewpoint, such quantities refer to model uncer-

tainty (informed by the training data). However our approach is not dogmatic; we

do attempt to control the characteristics of the functions produced by our priors,

but do not rigidly believe them. Instead, our goal is to choose flexible priors that

are capable of producing many shapes for y(·) and then let the Bayesian machinery

allow the data to direct the details of the prediction process. We also note that com-

puter experiments are not alone in their use of Bayesian prediction methodology to

analyze high-dimensional, highly correlated data. Many other scientific fields pro-

duce such data, albeit usually with measurement error. The statistical analyses used

in geostatistics (Matheron (1963), Journel and Huijbregts (1979)), environmental

statistics and disease mapping (Ripley (1981), Cressie (1993)), global optimization

(Mockus et al (1997)), and statistical learning (Hastie et al (2001)) are based on the

23

24 2 Stochastic Models for Computer Output

Bayesian philosophy. Hence many of the methodologies discussed in their litera-

tures are also relevant here.

In the following we let X denote the domain or input space for the unknown

output function y(·); y(·) is regarded to be a draw from a random function (“stochas-

tic process” or simply “process”) which is denoted by Y(·). With the exception of

the essentially philosophical statements in the following paragraph, we will adopt a

pragmatic viewpoint in discussing stochastic process models rather than a measure

theoretic one. Conceptually, a random function should be thought of as a mapping

from elements of a sample space of outcomes, say Ω, to a given set of functions, just

as random variables are mappings from a set Ω of elementary outcomes to the real

numbers. It will occasionally add clarity to our discussion to make this explicit by

writing y(x) = Y(x, ω) to be a particular function from X to IR1, where ω ∈ Ω is a

specific element in the sample space. Sometimes we refer to y(·, ω) as a draw from

the random function Y(·) or as a sample path (in X) of the random function. The

introduction of the underlying sample space Ω helps clarify ideas when discussing

the smoothness properties of functions drawn from Y(·).

We begin this discussion with a simple example to illustrate a random mechanism

for generating functions y(·).

Example 2.1. Suppose that we generate y(x) on [−1,+1] by the mechanism

Y(x) = b0 + b1x + b2x2, (2.1.1)

where b0, b1, and b2 are independent with bi ∼ N(0, σ2
i
) for i = 1, 2, 3. Func-

tions drawn from Y(x) are simple to visualize. Every realization y(·) is a quadratic

equation (P{b2 = 0} = 0) that is symmetric about an axis other than the y-axis

(symmetry about the y-axis occurs if and only if b1 = 0 and P{b1 = 0} = 0). The

quadratic is convex with probability 1/2 and it is concave with probability 1/2 (be-

cause P{b2 > 0} = 1/2 = P{b2 < 0}). Figure 2.1 illustrates ten outcomes from this

random function when σ2
0
= σ2

1
= σ2

2
= 1.0.

For any x ∈ [−1,+1] the draws from (2.1.1) have mean zero, i.e.,

E{Y(x)} = E{b0 + b1x + b2x2}
= E{b0} + E{b1} × x + E{b2} × x2

= 0 + 0 × x + 0 × x2 = 0. (2.1.2)

Equation (2.1.2) says that for any x, the mean of Y(x) is zero over many drawings

of the coefficients (b0, b1, b2); this is true because each regression coefficient is in-

dependent and centered at the origin so that each regression term is positive and

negative with probability 1/2 and thus their sum, Y(x), is also positive and negative

with probability 1/2.

For any x ∈ [−1,+1] the pointwise variance of Y(x) is

Var{Y(x)} = E
{(

b0 + b1x + b2x2
) (

b0 + b1x + b2x2
)}

= σ2
0 + σ

2
1x2 + σ2

2x4 ≥ 0.

2.1 Introduction 25

−1.0 −0.5 0.0 0.5 1.0

−
2

0
2

4

x

y(
.)

Fig. 2.1 Ten draws from the random function Y(x) = b0 + b1 x + b2 x2 on [−1,+1], where b0, b1,

and b2 are independent and identically N(0, 1.0) distributed.

The values of Y(x1) and Y(x2) at x1, x2 ∈ [−1,+1] are related, as can be seen

from

Cov{Y(x1), Y(x2)} = E
{(

b0 + b1x1 + b2x2
1

) (
b0 + b1x2 + b2x2

2

)}

= σ2
0 + σ

2
1x1x2 + σ

2
2 x2

1x2
2. (2.1.3)

This covariance can be positive or negative. The sign of the covariance of Y(x1)

and Y(x2) can intuitively be explained as follows. The covariance formula (2.1.3)

is clearly positive for any x1 and x2 when both are positive or both are negative.

Intuitively this is true because over many drawings of (b0, b1, b2), x1 and x2 both

tend to be on the same side of the axis of symmetry of the quadratic and thus Y(x1)

and Y(x2) increase or decrease together. The covariance formula can be negative

if x1 and x2 are on the opposite sides of the origin and σ2
1

dominates σ2
0

and σ2
2

(algebraically, the middle term in (2.1.3) is negative and can exceed the sum of the

other two terms). Intuitively, one circumstance where this occurs is if σ2
0

is small

(meaning the curves tend to go “near” (0, 0)), and σ2
2

is small (the curves tend to

be linear near the origin), and σ2
1

is large; in this case, the draws fluctuate between

those with large positive slopes and those with large negative slopes, implying that

Y(x1) and Y(x2) tend to have the opposite sign over the draws.

Because linear combinations of a fixed set of independent normal random vari-

ables have the normal distribution, the simple model (2.1.1) for Y(·) satisfies: for

each L > 1 and any choice of x1, . . . , xL ∈ X, the vector (Y(x1), . . . , Y(xL)) is multi-

variate normally distributed. (See Appendix B for a review of the multivariate nor-

mal distribution.) The y(·) realizations have several limitations from the viewpoint

26 2 Stochastic Models for Computer Output

of computer experiments. First, the model can only produce quadratic draws. Sec-

ond, the multivariate normal distribution of (Y(x1), . . . , Y(xL)) is degenerate when

L ≥ 4. In the development below we wish to derive more flexible random functions

that retain the computational advantage that (Y(x1), . . . , Y(xL)) has the multivariate

normal distribution. �

Many computer experiments that produce either multiple outputs, y(x) = (y1(x),

. . ., ym(x))⊤, or functional output, y(x, t), where t ∈ T . As an example of the former,

consider a code that computes not only y(x) but also each of the partial derivatives

of y(x). In this case, y(x) = (y(x), ∂y(x)/∂x1, . . . , ∂y(x)/∂xd). The usual approach to

analyzing functional data is represent the functions by a set of basis functions, thus

reducing reducing the functional output to multivariate data. Hence, Section 2.3

will describe random vector function models to handle settings that produce such

output. In the general multiple output case, we view the random mechanism as as-

sociating a vector valued function, y(x) = Y(x, ω), with each elementary outcome

ω ∈ Ω. Codes that produce multiple outcomes were introduced in Section ??; their

modeling will be considered in Subsection ??; applications of such models will be

provided in Subsections ?? and ??.

2.2 Models Real-Valued Output

2.2.1 The stationary GP model

add discussion of hierarchical stationary GPs (as a prelude to the discussion of

hierarchical Bayesian estimation)

2.2.2 Non-stationary Model 1: Regression + stationary GP model

used in later chapters as the basis for plug-in EBLUP predictors of various

types; as a building block of fully Bayesian predictors; Blind kryging

2.3 Mixed Input 27

2.2.3 Non-stationary Model 2: Regression + var(x) × stationary

GP model ??

2.2.4 Treed GP model

2.2.5 Composite GP (Convolution) Models

Following the description of experimental goals, we summarize the basic issues in

modeling computer output. Then we will be prepared to begin Chapter 3 on the

first of the two basic issues considered in this book, that of predicting y(·) at (a new)

input x0 based on training data (x1, y(x1)), . . . , (xn, y(xn)). Chapter 4 will address the

second issue, the design problem of choosing the input sites at which the computer

model should be run.

2.3 Models for Output having Mixed Qualitative and

Quantitative Inputs

to be worked into a discussion of mixed input case

• We describe a physical process by a mathematical model implemented with

code on a computer. This code is sometimes referred to as a simulator.

• The code produces deterministic outputs.

• The inputs include factors that are believed to affect the responses.

• We use the code to explore or experiment with the physical process, i.e., we

try different inputs in order to assess their effect on the outputs. We call this

a computer experiment.

• The code runs slowly. One run may take a day or longer. Thus, we can only

observe (experiment with) the code a small number of times. The choice of

the inputs at which to observe the code must be done carefully. Monte Carlo

methods that require many runs of the code are not feasible.

• To augment the limited number of runs of the code, we fit a statistical model

(predictor) to the runs and use the statistical model to predict the code at

unobserved inputs. This statistical predictor is sometimes called an emulator.

• We assume that the code produces deterministic output

y(x, t)

that depend on a set of quantitative input variables

x = (x1, x2, . . . , xd)⊤

and a qualitative variable having T levels, here indexed by t.

28 2 Stochastic Models for Computer Output

• If there are Q > 1 qualitative variables, with the q − th qualitative variable

having Tq levels, we assume that the T =
∏Q

q=1
Tq possible combinations of

levels are indexed by a single symbol taking on values from 1 to T (lexico-

graphically ordered). Unfortunately, this suppresses the inherent factorial

structure, and we will return to this later.

• We also assume the quantitative input variables are restricted to some subset

X ⊂ Rd

and that we observe the code at n points

(x1, t1), (x2, t2), . . . , (xn, tn)

• A popular statistical model is the so-called Gaussian stochastic process

(GaSP) model.

• As implemented in the literature, if the output of the simulator is assumed

to depend only on quantitative inputs x = (x1, x2, . . . , xd)⊤, we view our ob-

servation y(x) as a realization of the random function

Y(x) =

J∑

j=1

β j f j(x) + Z(x)

where the β j are unknown (regression) parameters, the f j are known (regres-

sion) functions, and Z(x) is a mean zero, second-order stationary Gaussian

process with variance σ2
Z

• In addition, we assume

cov(Z(xi), Z(x j)) = σ
2
Z
R(xi, x j)

where R(·, ·) is a valid correlation function, namely

• R(xi, xi) = 1

• For any finite set of inputs x1, x2, . . . , xn the n× n matrix R whose i, jth entry

is R(xi, x j) is positive definite.

• There are many possible choices for the correlation function R(·, ·). A very

popular choice is the Gaussian correlation function

R(xi, x j | θ) =

d∏

k=1

e−θk(xi,k−x j,k)2

,

where xl = (xl,1, xl,2, . . . , xl,d)⊤ for l = i, j and θ = (θ1, θ2, . . . , θd)⊤ are un-

known parameters (often referred to as the correlation parameters) with

θi ≥ 0 for all i.

• For purposes of this talk, assume the correlation function is the Gaussian

correlation function unless otherwise stated.

2.3 Mixed Input 29

• If Z(x) is a mean zero, second-order stationary Gaussian process with vari-

ance σ2
Z

and Gaussian correlation function, it has realizations that (w.p.1)

are infinitely differentiable and shape determined by σ2
Z

and the correlation

parameters.

• For example, if d = 1, the realizations “oscillate” with amplitude determined

byσ2
Z

and frequency determined by the correlation parameter θ. Larger val-

ues of θ produce higher frequency oscillations (a less smooth looking curve)

and thus some people refer to θ as a “roughness” parameter.

• (Insert figure)

• One can view the GaSP model as specifying the global (large-sale) trend and

local variation around the trend.

Y(x) =

J∑

j=1

β j f j(x)

︸ ︷︷ ︸
regression or global trend

+ Z(x)︸︷︷︸
local variation or trend

• For this model, one can use the best linear unbiased predictor (BLUP), Ŷ(x),

as an emulator. The BLUP assumes that σ2
Z

and θ are known and estimates

the β j by generalized least-squares. If one substitutes estimates for σ2
Z

and θ

into the BLUP, the resulting predictor is sometimes referred to as the empir-

ical best linear unbiased estimator (EBLUP). Estimates might be based on

maximum likelihood, restricted maximum likelihood, Bayes, or even cross-

validation. Another alternative to the BLUP is to adopt a fully Bayes ap-

proach.

• Some people refer to using the BLUP or EBLUP as the kriging predictor.

– One interesting characteristic of both the BLUP and EBLUP is that they

interpolate the data. This is viewed as a desirable property in determin-

istic computer experiments.

– Once we observe the simulator at a particular input, we know that fur-

ther runs at the same input will produce the same output. Thus, it seems

reasonable to use predictors that are interpolators.

• Because the EBLUP is an interpolator (regardless of the form of the regres-

sion part of the model) , and because realizations of Z(x) can take on a wide

variety of shapes, it is not uncommon to assume that the regression portion

of the model is very simple. Many papers assume that the regression part is

simply constant and use the constant mean model

Y(x) = β + Z(x)

• Another option is to assume that the regression portion is just a linear trend.

• Note, another interpretation of the GaSP model is to think of it as specifying

a prior on the the output as a function of x.

30 2 Stochastic Models for Computer Output

• The GaSP model and kriging (possibly Bayesian) have become a standard

method for developing a statistical predictor or emulator.

• Problem: Typical correlation functions (such as the Gaussian) assume that

all the inputs are quantitative.

• Question: How can one incorporate qualitative variables into the GaSP

model?

• Several methods have been proposed.

• We model y(x, t) as

Y(x, t) =
∑J

j=1 β j f j(x, t) + Zt(x)

where all terms are as before and Zt(x) is a mean zero, second-order station-

ary Gaussian process with variance σ2
Z,t

• In what follows I will assume a constant means model of the form

Y(x, t) = βt + Zt(x)

• In this model, one often interprets y(x, t) as determining t different curves or

response surfaces, indexed by t.

• We can fit separate GaSP models to each response surface. But perhaps if

the response surfaces are similar, we can build predictors for each surface

that “borrow” information from the other surfaces. This is similar to what

one does in multiple regression by using indicator variables to represent

different response surfaces.

• For example, one can use indicator variables to write a single multiple re-

gression model representing several lines. This single model has more de-

grees of freedom for error than fitting separate lines. This comes at the ex-

pense of having to assume the error variance is the same for each line.

• What happens if we simply add indicator variables to our model and act as

though they are quantitative?

For 1 ≤ t ≤ T define

It(i) =

{
1 if i = t

0 otherwise

• In this case the Gaussian correlation function becomes

R((x1, t1), (x2, t2)) =

T∏

l=1

e−γl(Il(t1)−Il(t2))2 ×
d∏

k=1

e−θk(x1,k−x2,k)2

= e−γt1 × e−γt2 ×
d∏

k=1

e−θk(x1,k−x2,k)2

= τt1τt2 ×
d∏

k=1

e−θk(x1,k−x2,k)2

where τt j
= e
−γt j . Notice 0 < τt j

< 1.

2.3 Mixed Input 31

• Suppose T = 4 with response surfaces 1 and 2 highly correlated, response

surfaces 3 and 4 highly correlated, but response surfaces 1 and 3 essentially

uncorrelated. If 1 and 2 are highly correlated we would expect τ1τ2 to be

close to 1, and hence both τ1 and τ2 must be close to 1. Similarly, if 3 and 4

are highly correlated we would expect τ3τ4 to be close to 1, and hence both

τ3 and τ4 must be close to 1. However, if 1 and 3 are essentially uncorrelated,

we would expect τ1τ3 to be close to 0. But this is impossible if both are close

to 1. (Of course, this assumes we can interpret the τi as correlations between

response surfaces.)

• This shows that if we “naively” use indicator variables to represent qualita-

tive variables (as we would do in standard regression) we impose a certain

structure on “between response surfaces” correlations.

Thus, simply using indicator variables to represent qualitative variables (at

least in the correlation function) does not work well.

• So one has to model the qualitative variables more carefully, at least in terms

of the correlation structure.

• One approach (Kennedy and O’Hagan 2000) assumes one has a collection

of multi-fidelity computer simulations, each involving the same quantitative

factors, and that these mulit-fidelity simulations can be modeled collectively

by a single computer model with a common set of quantitative factors and a

qualitative factor to describe the different accuracy of the simulations.

• This approach implicitly assumes that as the level of the qualitative factor

changes (increases) the fidelity increases. Thus, it may not be appropriate

for the more general case of incorporating a qualitative variable.

• Another approach (Han, et al. 2009) assumes

– the Zt(·) are mutually independent

– Corr(Zt(x1), Zt(x2)) =
∏d

k=1 e−θt,k(xi,k−x j,k)2

=
∏d

k=1 ρ
(x1,k−x2,k)2

t,k

– certain priors on the βt, the σ2
t , and the ρt,k = e−θt,k .

and through the priors attempts to capture “similarities” between between

the response surfaces y(x, t).

• Yet another approach (Qian et al. 2008 and Zhou et al. 2010) assumes

– Corr(Zt1 (x1), Zt2 (x2)) = τt1,t2

∏d
i=1 e−θi(x1,i−x2,i)

2

where τt1,t2 is the cross cor-

relation between the response surfaces corresponding to “categories” t1
and t2 of the qualitative variable.

– T × T matrix τ = {τr.s} is a positive definite matrix with unit diagonal

elements (this guarantees that the matrix of correlation whose i, jth entry

is Corr(Zti(xi), Zt j
(x j)) is a valid correlation matrix) .

– σ2
t = σ

2
Z

for all t.

32 2 Stochastic Models for Computer Output

• A hypersphere decomposition is used to model τ in Zhou et al. (2010), and

this parameterization is quite useful for fitting the model.

• Several special cases of this model are mentioned by Qian et al. (2008). Each

reduces the number of parameters one needs to estimate to fit the model.

• One case assumes all τti ,t j
= τ for i , j. This is sometimes referred to as the

exchangeable model.

• Another (see McMillian et al. 1999) assumes

τti ,t j
= e−(θi+θ j)I[i , j]

where θi and θ j are positive and I[i , j] is the indicator function.

• Note that we encountered the McMillan et al. (1999) structure previously

when we simply used indicator variables to represent the qualitative vari-

able. We saw that this had undesirable properties.

• A third special case is a Kronecker product structure. Suppose we have

J qualitative variables, and the jth qualitative variable has T j levels. Let

t = (t1, t2, . . . , tJ)⊤ denote the vector of qualitative variable levels for an in-

put that has qualitative variable j at level t j for j = 1, . . . , J. A legitimate

correlation function is

Corr(Zt1
(x1), Zt2

(x2)) =

J∏

j=1

τ j,t1, j .t2, j

d∏

i=1

e−θi(x1,i−x2,i)
2

where τ j, the T j × T j matrix with r, sth entry τ j,r,s, is positive definite with

unit diagonal entries. This corresponds to taking τ = τ1 ⊗ · · · ⊗ τJ , where ⊗
is the Kronecker product.

• This special case reduces the number of τti ,t j
parameters in the model. It also

“imposes” a sort of multiplicative main effects structure on the τti ,t j
, and

hence takes into account the factorial structure.

• Qian et al. (2008) consider additional forms for τ and for the τti ,t j
that assume

the levels of the qualitative factor can be organized into similar groups and

that allow for ordinal qualitative factors.

• The flexibility of the formulation in Qian et al. (2008) makes their model

attractive and it has appeared in several papers. As a consequence, I will

take a closer look at it.

But first, some comments.

• The model used in Qian et al. (2008) and Zhou et al. (2010) makes some

implicit assumptions about the different response surfaces determined by t.

First, in the correlation structure

Corr(Zt1 (x1), Zt2 (x2)) = τt1 ,t2

d∏

k=1

e−θk(x1,k−x2,k)2

2.3 Mixed Input 33

the correlation parameters θk and the process variance σ2
Z

are the same for

all values of t. This implies that the “shape” of the local variation as a func-

tion of the quantitative variables is the same.

• It is possible to use indicator variables in the Gaussian correlation function

to generate the correlation structure in Qian et al. (2008). One way, is as

follows.

• For 1 ≤ p ≤ T define

Ip(i) =

{
1 if p = i

0 otherwise

and for 1 ≤ p, q ≤ T − 1

Wp,q(i) =

{
Ip(i) + Iq(i) if p , q

Ip(i) if p = q

•

Corr(Zt1 (x1), Zt2 (x2)) =

T−1∏

p,q=1

e−γp,q(Wp,q(t1)−Wp,q(t2))2
d∏

k=1

e−θk(x1,k−x2,k)2

• One can show with some algebra, assuming γp,q = γq,p and for τi, j > 0, that

for i , j, i < T, j < T

−ln(τi, j) = γi,i + γ j, j − 4γi, j + 2

T−1∑

q=1,q,i

γi,q + 2

T−1∑

q=1,q, j

γ j,q

and for i , j, i = T, j < T

−ln(τT, j) = γ j, j + 2

T−1∑

q=1,q, j

γ j,q

and for i , j, i < T, j = T

−ln(τT, j) = γi,i + 2

T−1∑

q=1,q,i

γi,q

• Also for i , j, i < T, j < T

γi, j =
1

4
(ln(τi, j) − ln(τT, j) − ln(τi, T)

and for i < T

γi,i = −
1

2

∑
q = 1, q , iT ln(τi,q) +

1

2

∑
q = 1, q , iT−1ln(τT,q)

34 2 Stochastic Models for Computer Output

• Thus for τi, j > 0 there is a one-to-one correspondence between the τi, j, i , j

and the γp,q, p < m, q < m in the sense that given the τi, j we can determine

the corresponding γp,q and vice-versa.

This formulation with the variables Wp,q(·) allows us to use standard soft-

ware for fitting the Gaussian correlation to estimate the γp,q and θk and then

obtain the τi, j in the Qian, Wu, Wu (2008) model, assuming all τi, j > 0.

• Another way to reformulate the Qian et al. (2008) model so that the corre-

lation structure looks like one determined by the Gaussian correlation func-

tion is the following.

• In Kennedy and O’Hagan (2001), the Gaussian correlation function is ex-

pressed in the more general form

R(xi, x j | Ω) = e−(xi−x j)
⊤Ω(xi−x j),

where Ω is an unknown d × d positive definite symmetric matrix whose i, jth

entry is ωi, j. This reduces to the form presented earlier if Ω is a diagonal

matrix.

• As before, for 1 ≤ p ≤ T define

Ip(i) =

{
1 if p = i

0 otherwise

Let

I(i) = (I1(i), I2(i), . . . , IT (i))⊤

•

Corr(Zt1 (x1), Zt2 (x2)) = e−(I(t1)−I(t2))⊤Ω(I(t1)−I(t2))

×e−(xi−x j)
⊤diag(θ1,...,θd)(xi−x j)

• In this formulation, one can show for i , j and assuming all τi, j > 0,

−ln(τi, j) = ωi,i + ω j, j − 2ωi, j

• Notice that this reduces to the case τi, j = τ when Ω is a multiple of the

identity matrix, and it reduces to the McMillan et al. (1999) model when Ω

is a diagonal matrix.

One can define separate T j×T j matricesΩ j and obtain the Kronecker prod-

uct formulation of Qian et al. (2008), with each Ω j corresponding to the τ j.

• Another way to incorporate qualitative variables, inspired by how one

can characterize the multivariate normal distribution, is as follows. Let

N1((x),N2((x), . . . ,NS ((x) be S independent, identically distributed mean

zero, second-order stationary Gaussian processes with variance σ2
Z
. Assume

each satisfies

2.3 Mixed Input 35

Corr(Ni(x1),Ni(x2)) =

d∏

k=1

e−θi(x1,i−x2,i)
2

• Assume for 1 ≤ t ≤ T

Zt(x) =

S∑

i=1

ai,tNi(x)

• Then

(Z1(x), . . . , ZT (x))⊤ = A(N1(x, . . . ,NS (x))⊤

where A is the T × S matrix with ai, j as its i, jth entry.

• This yields the Qian et al. (2008) model provided τ = AA⊤. Qian, et al. (2008)

use this representation to prove that τ must be a positive definite symmetric

matrix with unit diagonal entries for the correlation structure in their model

to be valid.

But there is much more that can be done with this representation. Much of

what I now say is inspired by multivariate normal methods.

• The exchangeable model can be represented by

Zi(x) =
√
τN1(x) +

√
1 − τNi+1(x),

This indicates that the Y(x, i) are composed of a common overall trend (the

N1(x) term) and independent realizations of a “treatment effect” trend (the

Ni+1(x) terms). Both the overall trend and treatment effect trends are of the

same magnitude for each Y(x, i).

• The McMillan et al. (1999) model can be represented by

Y(x, i) = τiN1(x) +

√
1 − τ2

i
Ni+1(x),

This is similar to the exchangeable model, except the overall trend and treat-

ment effect trends can be of different magnitudes for each Y(x, i).

• Both the exchangeable model and the McMillan et al. (1999) model could

be interpreted as having a one-way ANOVA structure or a constant mean

(trend) structure plus noise.

• To represent the Kronecker product structure, let

N j(x) = (N
j

1
(x), . . . ,N

j

T j
(x))⊤

where the N
j

i
(x) are independent, identically distributed mean zero, second-

order stationary Gaussian processes with variance σ2
Z
. Let A j be the T j × T j

36 2 Stochastic Models for Computer Output

matrix satsfying τ j = A j A
⊤
j . Then in our general formulation A(N1(x), . . . ,NS (x))⊤

becomes

(⊗J
j=1 A j)(⊗J

j=1N j(x)).

• One can impose a factorial structure on the Y(x, i). For example, suppose we

believe the Y(x, i) are determined by two factors F and G with f and g levels,

respectively. Suppose Y(x, i) corresponds to F at level φ and G at level γ.

Y(x, i) ∝ a
µ

i
Nµ(x) + aF

i NF
φ (x) + aG

i NG
γ (x),

where Nµ(x) is an overall mean effect (trend), NF
φ (x) is the effect of level φ of

F, and NG
γ (x) the effect of level γ of G. This looks like a main effects model.

• An alternative is to include a small “error” effect Nǫ
i
(x) which gives

Y(x, i) ∝ a
µ

i
Nµ(x) + aF

i NF
φ (x) + aG

i NG
γ (x) + aǫi Nǫ

i (x)

• One might think of aǫ
i

as small relative to a
µ

i
, aF

i
, and aG

i

• If one does not require A to satisfy τ = AA⊤, then the formulation

(Y(x, 1), . . . , Y(x, T))⊤ = A(N1(x, . . . ,NS (x))⊤

• Allows the Y(x, i) to have different variances.

• Another application of this representation of the Qian et al. (2008) model

is a kind of factor analysis. Estimate the matrix τ and find a parsimonious

matrix A so that τ = AA⊤. The form of A may suggest some sort of factorial

structure, or perhaps the Y(x, i) depend mostly on a relatively small number

of the N j(x).

– Comments on fitting models and examples to be added. One challenge is

similar to what one encounters in factor analysis. In this representation

of the Qian et al. (2008) model the matrix A is only determined up to

multiplication by an orthogonal matrix.

• I did not say much about the Han et al. (2009) model. But this model allows

the Y(x, i) to have different variances and different correlation parameters.

Can one choose priors to reflect special structure, such as factorial struc-

ture?

• Are there better ways to incorporate qualitative variables into the models

that are popular in computer experiments?

How about treed processes?

People that are not “locked into” the GaSP model may have fresh ideas.

2.3 Mixed Input 37

• Viewing (Y(x, 1), . . . , Y(x, T))⊤ as multivariate may indicate that one should

consider multivariate stochastic processes. There is some literature on mul-

tivariate stochastic processes. The use of multivariate stochastic processes in

the spatial literature sometimes appears in papers discussing “co-regionalization.”

• What sorts of experimental designs should one use to fit models such as

Qian et al. (2008)? Should the same or very similar x be observed on each

Y(x, i)? Should different x be observed to better borrow information from

those Y(x, i) that are similar? Perhaps a mixture of same and different x?

What about a sequential procedure that identifies the x and i for which the

EBLUP Ŷ(x, i) has the largest prediction error, and then takes the next ob-

servation on curve i at x?

• Other strategies?

• Do we really need to worry about qualitative variables in computer exper-

iments? Are qualitative variables used in simulations, or is there a latent

quantitative variable present? For example, types of metal used in a product

could be viewed as qualitative, but in a simulation perhaps some quantita-

tive property of the metal is all that is used.

• Much of what I have said is work-in-progress with my Ph.D. student, Yulei

Zhang. One of the great things about this conference is that it is a wonderful

forum for presenting such work and getting critical feedback.

• Treed processes as an alternative.

• Emulators are interpolators, so how much do we need to worry about non-

stationarity?

• Computational issues with many factors with many levels. Is screening

needed?

Some References

1. Han, G., Santner, T. J., Notz, W. I., and Bartel, D. L. (2009). Prediction for

Computer Experiments Having Quantitative and Qualitative Input Vari-

ables. Technometrics 51 (3), 278-288.

2. Kennedy, M. C. and O’Hagan, A. (2000). Predicting the Output From a

Complex Computer Code When Fast Approximations are Available. Biometrika

87, 1-13.

3. Kennedy, M. C. and O’Hagan, A. (2001). Bayesian Calibration of Computer

Models (with discussion). Journal of the Royal Statistical Society B 63, 425-

464.

4. McMillan, N. J., Sacks, J., Welch, W. J., and Gao, F. (1999). Analysis of

Protein Activity Data by Gaussian Stochastic Process Models. Journal of

Biopharmeceutical Statistics 9, 145-160.

5. Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2008). Build-

ing Surrogate Models with Detailed and Approximate Simulations. ASME

Journal of Mechanical Design 128, 668-677.

38 2 Stochastic Models for Computer Output

6. Qian, P. Z. G. and Wu, C. F. J. (2008). Bayesian Hierarchical Modeling for

Integrating Low-accuracy and High-accuracy Experiments. Technometrics

50, 192-204.

7. Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008). Gaussian Process Models for

Computer Experiments With Qualitative and Quantitative Factors. Techno-

metrics 50, 383-396.

8. Zhou, Q., Qian, P. Z. G., Wu, H., and Zhou, S. (2010). A Simple Approach

to Emulation for Computer Models With Qualitative and Quantitative Fac-

tors. Technical Report University of Wisconsin.

2.4 Models for Multivariate and Functional Computer Output

2.4.1 Reducing Functional Data to Multivariate Data

2.4.2 Constructive Models

• AR spatial process models

• AR with shifts and rescaling

2.4.3 Separable Models (Conti and O’Hagan)

2.4.4 Basis Representations of Multivariate Output

• PCA

• kernel regression

Cor{Z(x1), Z(x2)} = Cov{Z(x1), Z(x2)}
√

Var{Z(x1)} × Var{Z(x2)}

=
C(x1 − x2)

σ2
Z

= R(x1 − x2).

What properties must valid covariance and correlation functions possess? As-

suming that Z(x) is nondegenerate, then C(0) (= σ2
Z
) > 0 while R(0) = 1. Because

Cov{Y(x+ h), Y(x)} = Cov{Y(x), Y(x+ h)}, the covariance and correlation functions

of stationary GRFs must be symmetric about the origin, i.e.,

C(h) = C(−h) and R(h) = R(−h).

2.4 Multivariate and Functional Output 39

Both C(·) and R(·) must be positive semidefinite functions; stated in terms of C(·),

this means that for any L ≥ 1, and any real numbers w1, . . . ,wL, and any inputs

x1, . . . , xL in X,
L∑

i=1

L∑

j=1

wiw jC(xi − x j) ≥ 0. (2.4.1)

The sum (2.4.1) must be nonnegative because the left-hand side is the variance of∑L
i=1 wiY(xi). The covariance function C(·) is positive definite provided > 0 holds in

(2.4.1) for every (w1, . . . ,wL) , 0 (any L ≥ 1 and any x1, . . . , xL in X).

While every covariance function must satisfy the symmetry and positive semidef-

inite properties above, these properties do not offer a convenient method for generat-

ing valid covariance functions. Rather, what is of greater importance is a character-

ization of the class of covariance functions because this would allow us to generate

valid covariance functions. While a general study of how to determine the form of

valid stationary covariance functions is beyond the scope of this book, one answer

to this question is relatively simple to state, and we do so next.

As a prelude to identifying this class of covariance functions (and as an intro-

duction to the topic of smoothness which is taken up again in Subsection 2.4.5),

we introduce the concept of mean square (MS) continuity. Mean square properties

describe the average performance of the sample paths. For purposes of stating the

definitions of MS properties, there is nothing to be gained by restricting attention to

GRFs and so we consider general random functions Y(·).

Definition Suppose Y(·) is a stationary process onX that has finite second moments.

We say that Y(·) is MS continuous at the point x0 ∈ X provided

lim
x→x0

E
{
(Y(x) − Y(x0))2

}
= 0.

The process is MS continuous on X provided it is MS continuous at every x0 ∈ X.

Suppose CY (·) is the covariance function of the stationary process Y(·), then

E
{
(Y(x) − Y(x0))2

}
= 2 (CY (0) −CY (x − x0)) . (2.4.2)

The right-hand formula shows that Y(·) is MS continuous at x0 provided CY (·) is

continuous at the origin—in fact, Y(·) is MS continuous at every x0 ∈ X pro-

vided CY (·) is continuous at the origin. Stated in terms of the correlation function,

CY (h)→ CY (0) = σ2
Z

as h→ 0 is equivalent to

RY (h) = CY (h)/σ2
Z
→ 1.0 as h→ 0.

Continuing our discussion of general random functions Y(·), Bochner (1955)

proved that the covariance function of every stationary, MS continuous random

function Y(·) on IRd, can be written in the form

40 2 Stochastic Models for Computer Output

CY (h) =

∫

IRd
cos(h⊤w) dG(w), (2.4.3)

where G(·) is positive finite symmetric measure on IRd. In particular, this character-

ization must hold for the special case of stationary GRFs. (See also the discussions

in Cramér and Leadbetter (1967) on page 126, Adler (1981) on page 25, Cressie

(1993) on page 84, or Stein (1999) on page 22-25.)

The process variance corresponding to CY (·) having the form (2.4.3) is

CY (0) =

∫

IRd
dG(w) < +∞

which is finite because G is a bounded measure on IRd; F(·) = G(·)/CY (0) is a

symmetric probability distribution, called the spectral distribution, corresponding

to CY (·). The function

RY (h) =

∫

IRd
cos(h⊤w) dF(w) (2.4.4)

is the correlation function corresponding to the spectral distribution F(·). If F(·) has

a density f (·), then f (·) is called the spectral density corresponding to RY (·). In this

case

RY (h) =

∫

IRd
cos(h⊤w) f (w) dw. (2.4.5)

The right-hand side of (2.4.5) gives us a method to produce valid correlation func-

tions (and covariance functions)—choose a symmetric density f (·) and evaluate the

integral (2.4.5).

Example 2.2. This first example shows how (2.4.5) can be used to generate valid

correlation functions from probability density functions that are symmetric about

the origin. Consider the one-dimensional case. Perhaps the simplest choice of one-

dimensional density is the uniform density over a symmetric interval which we take

to be (−1/θ,+1/θ) for a given θ > 0. Thus the spectral density is

f (w) =


θ/2, −1/θ < w < 1/θ

0, otherwise

and the corresponding correlation function is

R(h) =

∫ +1/θ

−1/θ

θ

2
cos(hw) dw =


sin(h/θ)

h/θ
, h , 0

1, h = 0
.

This correlation has scale parameter θ; Figure 2.2 shows that R(h) can model both

positive and negative correlations. �

Any function RY (·) of the form (2.4.4) must satisfy RY(0) = 1, must be continuous

at h = 0, must be symmetric about h = 0, and must be positive semidefinite. The

2.4 Multivariate and Functional Output 41

h

si
n(

4p
i*

h)
/(

4p
i*

h)

-1.0 -0.5 0.0 0.5 1.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.2 The correlation function R(h) = sin(h/θ)/(h/θ) for θ = 1/4π over h in [−1,+1].

first consequence holds because

RY (0) =

∫

IRd
cos(0⊤w) dF(w) =

∫

IRd
1 dF(w) = 1,

where the third equality in the above is true because F(·) is a probability distribu-

tion. Continuity follows by an application of the dominated convergence theorem;

notice that from the argument following (2.4.2), continuity of RY (h) at the origin

insures that the corresponding process is MS continuous. Symmetry holds because

cos(−x) = cos(x) for all real x. Positive semidefinite is true because for any L ≥ 1,

any real numbers w1, . . . ,wL, and any x1, . . . , xL we have

L∑

i=1

L∑

j=1

wiw jRY (xi − x j)

42 2 Stochastic Models for Computer Output

=

∫

IRd

L∑

i=1

L∑

j=1

wiw j cos(x⊤i w − x⊤j w) dF(w)

=

∫

IRd

L∑

i=1

L∑

j=1

wiw j

{
cos(x⊤i w) cos(x⊤j w)

+ sin(x⊤i w) sin(x⊤j w)
}

dF(w)

=

∫

IRd




L∑

i=1

wi cos(x⊤i w)


2

+


L∑

i=1

wi sin(x⊤i w)


2


dF(w)

≥ 0.

Continuity, symmetry, and positive semidefiniteness also hold for any covariance

function CY (·) of form (2.4.3).

We conclude by mentioning several additional tools that are extremely useful for

“building” covariance and correlation functions given a basic set of such functions.

Suppose that C1(·) and C2(·) are valid covariance functions. Then their sum and

product,

C1(·) +C2(·) and C1(·) ×C2(·),

are also valid covariance functions. The sum, C1(·) +C2(·), is the covariance of two

independent processes, one with covariance function C1(·) and the other with covari-

ance function C2(·). Similarly, C1(·)×C2(·) is the covariance function of the product

of two independent zero-mean GRFs with covariances C1(·) and C2(·), respectively.

The product of two valid correlation functions, R1(·) and R2(·), is a valid corre-

lation function, but their sum is not (notice that R1(0) + R2(0) = 2, which is not

possible for a correlation function). Correlation functions that are the products of

one-dimensional marginal correlation functions are sometimes called separable cor-

relation functions (not to be confused with the earlier use of the term separable).

We now introduce two widely–used families of correlation functions that have

been used in the literature to specify stationary Gaussian stochastic processes (see

also Journel and Huijbregts (1978), Mitchell et al (1990), Cressie (1993), Vecchia

(1988), and Stein (1999)).

Example 2.3. Another familiar choice of a symmetric density that can be used as

a spectral density is the normal density. To give a simple form for the resulting

correlation function, take the spectral density to be N(0, 2/θ2) for θ > 0. Calculation

gives

R(h) =

∫ +∞

−∞
cos(hw)

θ
√

2π
√

2
exp{−w2θ2/4} dw

= exp
{
−(h/θ)2

}
. (2.4.6)

This correlation is sometimes called the Gaussian correlation function because of

its form but the reader should realize that the name is, perhaps, a misnomer. The

Gaussian correlation function is a special case of the more general family of corre-

2.4 Multivariate and Functional Output 43

lations called the power exponential correlation family. This family is far and away

the most popular family of correlation models in the computer experiments litera-

ture. The one-dimensional GRF Z(x) on x ∈ IR has power exponential correlation

function provided

R(h) = exp {−|h/θ|p} for h ∈ IR, (2.4.7)

where θ > 0, and 0 < p ≤ 2. In addition to the Gaussian subfamily, the case p = 1,

R(h) = exp {−(|h|/θ)}

is well-studied. The GRF corresponding to this correlation function is known as the

Ornstein-Uhlenbeck process.

For later reference, we note that every power exponential correlation function,

0 < p ≤ 2, is continuous at the origin, and none, except the Gaussian p = 2, is

differentiable at the origin. In fact, the Gaussian correlation function is infinitely

differentiable at the origin.

From the fact that products of correlation functions are also correlation functions,

R(h) = exp


−

d∑

j=1

|h j/θ j|p j


(2.4.8)

is a d-dimensional separable version of the power exponential correlation function,

as is the special case of the product Gaussian family

R(h) = exp


−

d∑

j=1

(h j/θ j)
2



which has dimension–specific scale parameters. �

Example 2.4. Suppose that Z(x) is a one-dimensional GRF on x ∈ IR with correla-

tion function

R(h|θ) =



1 − 6
(

h
θ

)2
+ 6

(|h|
θ

)3
, |h| ≤ θ/2

2
(
1 − |h|

θ

)3
, θ/2 < |h| ≤ θ

0, θ < |h|

, (2.4.9)

where 0 < θ and h ∈ IR. The function R(h|θ) has two continuous derivatives at

h = 0 and also at the change point h = θ/2 (see the right column of Figure 2.6).

R(h|θ) assigns zero correlation to inputs x1 and x2 that are sufficiently far apart

(|x1 − x2| > θ). Formally, the spectral density that produces (2.4.9) is proportional to

1

w4θ3
{72 − 96 cos (wθ/2) + 24 cos(wθ)} .

Anticipating Section 3.2 on prediction in computer experiments, the use of

(2.4.9) leads to cubic spline interpolating predictors. As in the previous example,

we note that

44 2 Stochastic Models for Computer Output

R(h|θ) =

d∏

j=1

R(h j|θ j)

for h ∈ IRd is a correlation function that allows each input dimension to have its own

scale and thus dimension specific rate at which Z(·) values become uncorrelated.

Other one-dimensional cubic correlation functions can be found in Mitchell et al

(1990) and Currin et al (1991). �

Example 2.5. Another useful compactly supported correlation function is the Bohman

correlation function (Gneiting (2002)). The Bohman correlation in one-dimension

is defined to be

R(h|θ) =
{ (

1 − |h|
θ

)
cos

(
π|h|
θ

)
+ 1

π
sin

(
π|h|
θ

)
, |h| < θ;

0, |h| ≥ θ (2.4.10)

where θ > 0. �

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h

R
(h

)

θ = 1
θ = 3
θ = 5

Fig. 2.3 Comparison of the Cubic and Bohman correlation functions for common θ.

Because they can result in zeroes in (many) off-diagonal elements of the cor-

relation matrix of the training data, compactly supported correlation functions have

been used the basis for prediction in such cases (see however, Kaufman et al (2011)).

However, for the same θ these two functions are nearly identical as Figure 2.3 shows;

as of the writing of this book there is not a great deal of difference that has been

found in predictions when using the two functions.

2.4 Multivariate and Functional Output 45

2.4.5 Using the Correlation Function to Specify a GRF with Given

Smoothness Properties

In practice we reduce the choice of a GRF to that of a covariance (or correlation)

function whose realizations have desired prior smoothness characteristics. Hence we

now turn attention to describing the relationship between the smoothness properties

of a stationary GRF, Z(·), and the properties of its covariance function, C(·). To de-

scribe this relationship for general processes would require substantial space. By re-

stricting attention to stationary GRFs we can provide a relatively concise overview.

See Adler (1990), Abrahamsen (1997), or Stein (1999) for a discussion of these

ideas for more general processes and for additional detail concerning the Gaussian

process case.

There are several different types of “continuity” and “differentiability” that a pro-

cess can possess. The definitions differ in their ease of application and the technical

simplicity with which they are established. Given a particular property such as con-

tinuity at a point or differentiability over an interval, we would like to know that

draws from a given random function model Z(·) have that property with probability

one. For example, if Q is a property of interest, say continuity at the point x0, then

we desire

P
{
ω : Z(·, ω) has property Q

}
= 1.

We term this almost sure behavior of the sample paths.

Subsection ?? introduced the widely-used concept of MS continuity. We saw an

instance of the general fact that MS properties are relatively simple to prove, al-

though they are not of direct interest in describing sample paths. Below we show

that a slight strengthening of the conditions under which MS continuity holds guar-

antees almost sure continuity.

Recall that in Subsection ?? we stated that any stationary random function Z(·) on

X having finite second moments is MS continuous onX provided that its correlation

function is continuous at the origin, i.e., R(h) → 1 as h → 0. GRFs with either the

cubic (2.4.9) or the power exponential (2.4.7) correlation functions are examples of

such random functions.

Adler (1981) (page 60) shows that for the sample paths of stationary GRFs to

be almost surely continuous, one need only add a condition requiring that R(h)

converge to unity sufficiently fast. For example, a consequence of his Theorem 3.4.1

is that, if Z(·) is a stationary GRF with correlation function R(·) that satisfies

1 − R(h) ≤ c

| log(‖h‖2)|1+ǫ for all ‖h‖2 < δ (2.4.11)

for some c > 0, some ǫ > 0, and some δ < 1, then Z(·) has almost surely continuous

sample paths. MS continuity requires that (1 − R(h)) → 0 as h → 0; the factor

| log(‖h‖2)|1+ǫ → +∞ as h→ 0. Thus (2.4.11) holds provided that 1−R(h) converges

to zero at least as fast as | log(‖h‖2)|1+ǫ diverges to +∞. The product

[1 − R(h)] ×
∣∣∣log (‖h‖2)

∣∣∣1+ǫ

46 2 Stochastic Models for Computer Output

is bounded for most correlation functions used in practice. In particular this is true

for any power exponential correlation function with 0 < p ≤ 2. One can also use

the spectral distribution to give sufficient conditions for almost sure continuity of

sample paths. The standard conditions are stated in terms of the finiteness of the mo-

ments of the spectral distribution. For example, see Theorem 3.4.3 of Adler (1981)

or Sections 9.3 and 9.5 of Cramér and Leadbetter (1967).

Conditions for almost sure continuity of the sample paths of nonstationary GRFs,

Z(·), can be similarly expressed in terms of the rate at which

E
{
|Z(x1) − Z(x2)|2

}

converges to zero as ‖x1 − x2‖2 → 0 (Adler (1981), Theorem 3.4.1).

As for continuity, a concept of mean square differentiability can be defined that

describes the mean difference of the usual tangent slopes of a given process and a

limiting “derivative process.” Instead, here we directly discuss the parallel to almost

sure continuity. Consider the individual sample draws z(x) = Z(x, ω), X ⊂ IRd,

corresponding to specific outcomes ω ∈ Ω. Suppose that the jth partial derivative of

Z(x, ω) exists for j = 1, . . .d and x ∈ X, i.e.,

∇ jZ(x, ω) = lim
δ→0

Z(x + e jδ, ω) − Z(x, ω)

δ

exists where e j denotes the unit vector in the jth direction. Let

∇Z(x, ω) = (∇1Z(x, ω), . . . ,∇dZ(x, ω))

denote the vector of partial derivatives of Z(x, ω), sometimes called the gradient

of Z(x, ω). We will state conditions on the covariance (correlation) function that

guarantee that the sample paths are almost surely differentiable. The situation for

higher order derivatives can be described in a similar manner, sample pathwise, for

each ω.

As motivation for the condition given below, we observe the following heuristic

calculation that gives the covariance of the derivative of Z(·). Fix x1 and x2 in X,

then

Cov
(

1
δ1

(Z(x1 + e jδ1) − Z(x1)) , 1
δ2

(Z(x2 + e jδ2) − Z(x2))
)

=
1

δ1δ2

{
C(x1 − x2 + e j(δ1 − δ2)) −C(x1 − x2 + e jδ1)

− C(x1 − x2 − e jδ2) +C(x1 − x2)
}

→ − ∂2C(h)

∂h2
j

∣∣∣∣∣∣∣
h = x1−x2

(2.4.12)

as δ1, δ2 → 0 when the second partial derivative of C(·) exists. These calculations

motivate the fact that the covariance function of the partial derivatives of Z(·), if they

2.4 Multivariate and Functional Output 47

exist, are given by the partial derivatives of C(h). Thus it should come as no surprise

that to assure that a given Gaussian random field has, almost surely, differentiable

draws, the conditions required are on the partial derivatives of the covariance func-

tion.

Formally, suppose

C
(2)

j
(h) ≡ ∂2C(h)

∂h2
j

exists and is continuous with C
(2)

j
(0) , 0; let R

(2)

j
(h) ≡ C

(2)

j
(h)/C

(2)

j
(0) be the nor-

malized version of C
(2)

j
(·). Then almost surely Z(·) has jth partial differentiable sam-

ple path, denoted ∇ jZ(x), provided R
(2)

j
(·) satisfies (2.4.11). In this case −C

(2)

j
(h) is

the covariance function and R
(2)

j
(h) is the correlation function of ∇ jZ(x).

Higher order Z(·) derivatives can be iteratively developed in the same way, al-

though a more sophisticated notation must be introduced to describe the higher-

order partial derivatives required of C(·). Conditions for nonstationary Z(·) can be

determined from almost sure continuity conditions for nonstationary Z(·) (Adler

(1981), Chapter 3).

We complete this section by illustrating the effects of changing the covariance

parameters on the draws of several stationary GRFs that were introduced earlier

and on one important additional family, the Matérn correlation function. In each

case, the plot was obtained by linearly joining draws from an appropriate 20 or 40

dimensional multivariate normal distribution; hence the figures give the spirit, if not

the detail, of the sample paths from the associated process. The interested reader

can gain additional feel for stationary Gaussian processes by using the software of

Kozintsev (1999) or Kozintsev and Kedem (2000) for generating two-dimensional

Gaussian random fields (see the URL

http://www.math.umd.edu/˜bnk/CLIP/clip.gauss.htm

for details).

Example 2.4. (Continued–power exponential correlation function) Figures 2.4

and 2.5 show the marginal effects of changing the shape parameter p and the scale

parameter θ on the function draws from GRFs over [0, 1] having the power expo-

nential correlation function (2.4.7). These figures, and those that illustrate the other

GRFs that are discussed below, connect 20 points drawn from a multivariate normal

distribution having the desired covariance matrix and so illustrate the spirit of the

function draws, if not their fine detail.

For powers p < 2, the sample paths are theoretically nondifferentiable and this

can be seen in the bottom two panels of Figure 2.4. The sample paths for p = 2.0

are infinitely differentiable; the draws in the top panel of Figure 2.4 are very near

the process mean of zero for θ = 1.0. As shown in Figure 2.5, the number of lo-

cal maxima and minima in sample paths is controlled by the scale parameter when

p = 2.0. Figure 2.5 shows that as the scale parameter θ decreases, the correlations

for each fixed pair of inputs decreases and the sample paths have increasing num-

bers of local maxima. This is true because the process exhibits less dependence for

48 2 Stochastic Models for Computer Output

“near-by” x and thus “wiggles” more like white noise, the case of uncorrelated Z(x).

As θ increases, the correlation for each pair of inputs increases and, as the correla-

tion approaches unity, the draws become more nearly the constant zero, the process

mean. In Figure 2.5 the most extreme case of this phenomenon is shown in the top

panel where (p, θ) = (2.0, 0.50). �

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

h

R
(h

)

−2 −1 0 1 2

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−2 −1 0 1 2

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−2 −1 0 1 2

0.
0

0.
4

0.
8

Fig. 2.4 The Effect of Varying the Power on the Sample Paths of a GRF with a Power Exponen-

tial Correlation Function. Four draws from a zero mean, unit variance GRF with the exponential

correlation (2.4.7) having fixed θ ≡ 1.0 with p = 2.0 (dashed lines), p = 0.75 (dotted lines), and

p = 0.20 (solid lines).

Example 2.5. (Continued–cubic correlation function) Recall that the cubic corre-

lation (and covariance) function (2.4.9) is twice continuously differentiable. Thus

draws from a GRF with this correlation structure will be continuous and differen-

tiable. Figure 2.6 shows draws from this process for different θ. As the scale param-

eter θ decreases, the domain where R(h) = 0 increases and hence the paths become

more like white noise, i.e., having independent and identically distributed Gaussian

components. As θ increases, the paths tend to become flatter with fewer local max-

ima and minima. �

Example 2.6. The Matérn correlation function was introduced by Matérn in his the-

sis (Matérn (1960) or see the reprint Matérn (1986) and Vecchia (1988) for related

work). This model has been used especially to describe the spatial and temporal

2.4 Multivariate and Functional Output 49

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

h

R
(h

)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

Fig. 2.5 The Effect of Varying the Scale Parameter on the Sample Paths of a GRF with a Power

Exponential Correlation Function. Four draws from a zero mean, unit variance GRF with the ex-

ponential correlation function (2.4.6) (having fixed p = 2.0) for θ = 0.50 (dashed lines), θ = 0.25

(dotted lines), and θ = 0.10 (solid lines).

variability in environmental data (see Rodrı́guez-Iturbe and Mejı́a (1974), Hand-

cock and Stein (1993), Handcock and Wallis (1994), and especially Stein (1999)).

From the viewpoint of the spectral representation, the Matérn correlation func-

tion arises by choosing the t distribution as the spectral density. Given ν > 0 and

θ > 0, use of the t density

f (w) =
Γ(ν + 1/2)

Γ(ν)
√
π

(
4ν

θ2

)ν
1

(
w2 + 4ν

θ2

)ν+1/2

in spectral correlation formula (2.4.4) gives the two parameter correlation family

R(h) =
1

Γ(ν)2ν−1

(
2
√
ν |h|
θ

)ν
Kν

(
2
√
ν |h|
θ

)
, (2.4.13)

where Kν(·) is the modified Bessel function of order ν. As is usual in the literature,

we refer to (2.4.13) as the Matérn correlation function. The parameter θ is clearly a

scale parameter for this family. The modified Bessel function arises as the solution

of a certain class of ordinary differential equations (Kreyszig (1999)). In general,

Kν(t) is defined in terms of an infinite power series in t; when ν equals a half integer,

i.e., ν = n + 1/2 for n ∈ {0, 1, 2, . . .}, then Kn+1/2(·) can be expressed as the finite

50 2 Stochastic Models for Computer Output

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-2 -1 0 1 2

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-2 -1 0 1 2

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0
-2

0
2

h

R
(h

)

-2 -1 0 1 2

0.
0

0.
6

Fig. 2.6 The Effect of Varying the Scale Parameter on the Sample Paths of a GRF with a Cubic

Correlation Function. Four draws from a zero mean, unit variance GRF with the cubic correlation

function (2.4.9) for θ = 0.5 (solid lines), θ = 1.0 (dotted lines), and θ = 10.0 (dashed lines). The

corresponding correlation function is plotted to the right of each set of sample paths.

sum

Kn+1/2(t) = e−t

√
π

2t

n∑

k=0

(n + k)!

k! (n − k)!

1

(2t)k
.

The corresponding Matérn correlation function (2.4.13) is

e−2
√
ν|h|/θ

b0

(
|h|
θ

)n

+ b1

(
|h|
θ

)n−1

+ b2

(
|h|
θ

)n−2

+ · · · + bn

 ,

where the coefficients are given by

b j =

√
π ν(n− j)/2

4 jΓ(ν)

(n + j)!

j! (n − j)!

for j = 0, 1, . . .where ν = n + 1/2; the b j depend on ν but not θ. For example, when

n = 0 (ν = 1/2),

K1/2(t) =
√
πe−t/

√
2t and so R(h) = e−

√
2|h|/θ,

2.4 Multivariate and Functional Output 51

which is a special case of the power exponential correlation function with p = 1

that was introduced earlier. Similarly, R(h)→ e−(h/θ)2

as ν→ ∞ so that this class of

correlations includes the Gaussian correlation function in the limit.

The smoothness of functions drawn from a GRF with Matérn correlation depends

on ν. Let ⌈ν⌉ denote the integer ceiling of ν, i.e., the smallest integer that is greater

than or equal to ν. For example, ⌈3.2⌉ = 4 and ⌈3⌉ = 3. Then functions drawn from

a GRF having the Matérn correlation have almost surely continuously differentiable

sample draws of order (⌈ν⌉ − 1). Thus we refer to ν as the smoothness parameter of

the Matérn family (see Cramér and Leadbetter (1967)).

Products of the one-dimensional Matérn correlation function can be useful for

modeling d-dimensional input responses. In this case, the family might include di-

mension specific scale parameters and a common smoothness parameter,

R(h) =

d∏

i=1

1

Γ(ν)2ν−1

(
2
√
ν |hi|
θi

)ν
Kν

(
2
√
ν |hi|
θi

)
,

or dimension specific scale and smoothness parameters.

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-0.4 0.0 0.4

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-0.4 0.0 0.4

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-0.4 0.0 0.4

0.
0

0.
6

Fig. 2.7 The Effect of Varying the ν Parameter on the Sample Paths of a GRF with Matérn Cor-

relation Function. Four draws from a zero mean, unit variance GRF with the Matérn correlation

function (2.4.13) (having fixed θ = 0.25) for ν = 1 (solid lines), ν = 2.5 (dotted lines), and ν = 5

(dashed lines).

52 2 Stochastic Models for Computer Output

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-0.10 0.0 0.10

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2

h

R
(h

)

-0.4 0.0 0.4

0.
0

0.
6

x

Y

0.0 0.2 0.4 0.6 0.8 1.0
-2

0
2

h

R
(h

)

-1.0 0.0 1.0

0.
0

0.
6

Fig. 2.8 The Effect of Varying the Scale Parameter on the Sample Paths of a GRF with Matérn

Correlation Function. Four draws from a zero mean, unit variance GRF with the Matérn correlation

function (2.4.13) (having fixed ν = 4) for θ = 0.01 (solid lines), θ = 0.25 (dotted lines), and θ = 2.0

(dashed lines).

We conclude by displaying sets of function draws from one-dimensional GRFs

on [0, 1] having different Matérn correlation functions to illustrate the effect of

changing the scale and shape parameters.

Figure 2.7 fixes the scale parameter at θ = 0.25 and varies ν ∈ {1, 2.5, 5}. The

draws clearly show the increase in smoothness as ν increases. As a practical matter,

it is difficult for most observers to distinguish sample paths having 3 or 4 continuous

derivatives from those that are infinitely differentiable. In contrast, Figure 2.8 fixes

the smoothness parameter at ν = 4 and varies θ ∈ {0.01, 0.25, 2.0}. For fixed ν

and 0 < h < 1.0, the scaled range of |h|/θ varies substantially for different θ; |h|/θ
ranges from 0.0 to 100 for θ = 0.01 while this ratio only varies over 0.0 to 0.5

for θ = 2.0. Notice that we use different h ranges for plotting R(h) in Figure 2.8

to better illustrate the character of the correlation function near the origin. As θ

decreases, the correlation function of any two fixed points decreases (to zero) and

hence the sample paths “look” more like white noise. Thus the bottom panel of this

figure plots a process with many more local maxima and minima than does the top

panel. �

2.4 Multivariate and Functional Output 53

2.4.6 Hierarchical Gaussian Random Field Models

While the examples above can provide guidance about the choice of a specific GRF

prior for y(·), it will often be the case that the user will not be prepared to specify

every detail of the GRF prior. For example, it will often be difficult to specify the

correlation function of the GRF. A flexible alternative to the complete specification

of a GRF is to use a hierarchical GRF prior model for Y(·). To describe this model,

suppose that

Y(x) =

p∑

j=1

f j(x)β j + Z(x) = f⊤(x)β + Z(x),

where Z(·) is a Gaussian random field with zero mean, variance σ2
Z
, and correlation

function R(· |ψ). Here R(· |ψ) denotes a parametric family of correlation functions.

In a hierarchical model some (or all) of β, σ2
Z
, and ψ are not specified but rather a

2nd stage distribution that describes expert opinion about the relative likelihood of

the parameter values is specified.

To be specific, suppose it desired to place a 2nd stage prior on all three parameters

β,σ2
Z
, andψ. Sometimes this task is facilitated because the prior [β, σ2

Z
,ψ] can be ex-

pressed in “pieces.” Suppose that it is reasonable to assume that large scale location

parameters β and the small scale variance, σ2
Z
, are independent of the correlation

parameters, ψ. This means that

[β, σ2
Z
,ψ] = [β, σ2

Z
] × [ψ] = [β |σ2

Z
] × [σ2

Z
] × [ψ] .

The second equality is true because [β, σ2
Z
] = [β |σ2

Z
] × [σ2

Z
] always holds. Thus the

overall prior can be determined from these three pieces, which is often easier to do.

One complication with hierarchical models is that even when [β, σ2
Z
,ψ] can be

specified, it will usually be the case that the Y(x) posterior cannot be expressed in

closed form. Subsection 3.3.2.4 discusses the problem of computing the posterior

mean in the context of various “empirical best linear unbiased predictors.” See espe-

cially the discussion of “posterior mode empirical best linear unbiased predictors”

beginning on page 73.

As an example, suppose that the input x is d-dimensional and that R(· |ψ) has the

product Matérn correlation function

R(h |ψ) =

d∏

i=1

1

Γ(ν)2ν−1

(
2
√
ν |hi|
θi

)ν
Kν

(
2
√
ν |hi|
θi

)
(2.4.14)

with unknown common smoothness parameter and dimension-specific scale param-

eters; thus ψ = (θ1, . . . , θd, ν). Consider specification of prior [ψ = (θ1, . . . , θd, ν)].

Suppose that any ν, 2 ≤ ν ≤ 50 is equally likely, which implies that the number

of derivatives in each dimension is equally likely to range from 1 to 49. Given ν,

2nd stage priors can be placed on each scale parameter by soliciting expert opinion

about likelihood of correlation values between Y(x1) and Y(x2) where x1 and x2

differ in exactly one coordinate direction. See Oakley (2002) for details and a case

54 2 Stochastic Models for Computer Output

study. There are other examples of the construction of 2nd stage prior distributions

for parameters, mostly in the environmental literature. For example, Handcock and

Wallis (1994) build a prior distribution for correlation parameters in their space-time

model of the mean temperature of a region of the northern United States.

The references in the previous paragraph describe what might be thought of as

“informative” 2nd stage priors. Again returning to the Matérn correlation function

(2.4.14), it may be difficult to choose even the means and variances of the smooth-

ness parameter and the scale parameters for specific dimensions, much less the [ψ]

joint distribution. In such cases it is tempting to develop and use so-called “non-

informative” 2nd stage priors, which give “equal” weight to all the legitimate pa-

rameter values. The reader should be warned that there is not always agreement in

the statistical community about what constitutes a non-informative prior, even for

parameters having finite ranges. Furthermore not every choice of a non-informative

2nd stage prior dovetails with the 1st stage model to produce a legitimate prior for

y(·) (see the important paper by Berger et al (2001)). More will said about non-

informative 2nd stage priors in Subsection 3.3.2.4 on page 73, which discusses “pos-

terior mode empirical best linear unbiased predictors.” Such predictors assume that

a hierarchical GRF model is specified having parametric correlation function R(· |ψ)

with unknown ψ.

A third possible choice for a 2nd stage parameter prior is a “conjugate” prior.

Conjugate priors lead to closed-form posterior calculations, and are sometimes rea-

sonable. Subsection 4.1.2 discusses conjugate and non-informative 2nd stage [β] dis-

tributions (with σ2
Z

and ψ known). Subsection 4.1.3 gives the analogous conjugate

and non-informative 2nd stage [β, σ2
Z
] distributions (with ψ known). These two sub-

sections give closed-form expressions for the posterior of Y(x) given the data.

2.5 Chapter Notes

There are many sources that provide detailed theoretical discussions of random

functions, particularly the Gaussian random functions introduced in Subsections ??–

2.4.5 (?, ?, ?, and ?, for example). It is not our purpose to present a complete account

of the theory. Rather, we desire to give an overview of these models, to describe the

relationship between the “correlation function” of stationary Gaussian random func-

tions and the smoothness properties of its realizations y(x), and to develop intuition

about this relationship through a series of examples.

Chapter 3

Predicting Output from Computer Experiments

3.1 Introduction

This chapter discusses techniques for predicting the output of a computer model

based on training data. A naı́ve view of this problem might regard it as being point

estimation of a fixed population quantity. In contrast, prediction is the problem of

providing a point guess of the realization of a random variable. The reason why

prediction is the relevant methodology for the computer experiment application will

be discussed in Section 3.2.

Knowing how to predict computer output is a prerequisite for answering most

practical research questions involving computer experiments. A partial list of such

problems is given in Section ??. As an example, Section 5.3 will present a method

for sequentially designing a computer experiment to find input conditions that max-

imize the computer output; this sequential design method uses the prediction meth-

ods developed in this chapter.

To introduce ideas, we initially consider the generic problem of predicting an

arbitrary random variable Y0 based on data Yn = (Y1, . . . , Yn)⊤. When Y0 and Yn

are dependent random quantities, it seems intuitive that Yn contains information

about Y0. Hence it should be no surprise that the Y0 predictors we introduce in this

chapter depend on the joint distribution of Y0 and Yn. Section 3.2 describes several

Y0 predictors based on various optimality and convenience criteria.

Section 3.3 applies these methods to predict Y(x0), the computer output at x0,

based on training data (xi, Y(xi)), 1 ≤ i ≤ n. The reader who is familiar with regres-

sion methodology might think of using a flexible regression model as a predictor to

solve this problem. For example, a cubic model in x might be considered a reason-

ably adaptable regression model. As an alternative, Section 3.3 applies the predictors

developed in Section 3.2 to the computer experiment problem. A simulation study

of the small-sample mean squared prediction error of cubic regression with the al-

ternative predictors developed in Section 3.3 shows that cubic regression is vastly

inferior to any of the Section 3.3 predictors.

55

56 3 Prediction Methodology

3.2 Prediction Basics

3.2.1 Classes of Predictors

Consider a general setup in which we wish to predict a random variable Y0 based

on training data Yn = (Y1, . . . , Yn)⊤. Let Ŷ0 = Ŷ0(Yn) denote a generic predictor of

the random variable Y0 based on Yn. This book is concerned with three classes of

Y0 predictors:

• Predictors: Ŷ0 = Ŷ0(Yn) having unrestricted functional form in Yn

• Linear predictors (LP): Ŷ0 = a0+
∑n

i=1 aiYi = a0+ a⊤Yn, where a⊤ = (a1, . . . , an)

• Linear unbiased predictors (LUP): Linear predictors Ŷ0 = a0 + a⊤Yn that have

the additional property of “unbiased” with respect to a given family F of (joint)

distributions for (Y0,Y
n)

Definition The predictor Ŷ0 = a0 + a⊤Yn is unbiased for Y0 with respect to the class

of distributions F provided

EF

{
Ŷ0

}
= EF {Y0} (3.2.1)

for all F ∈ F , where EF{·} denotes expectation under the F(·) distribution for

(Y0,Y
n).

In (3.2.1), we emphasize that the unbiasedness of the predictor Ŷ0 depends on

the class F . Ordinarily we will suppress the subscript F in the notation EF {·} when

this distribution is clear from the context. As the size of the family F increases,

the requirement (3.2.1) must hold for additional F and thus the set of LPs that are

unbiased with respect to F cannot increase (and usually decreases).

Example 3.1. (The form of LUPs for a location parameter model) Suppose

Yi = β0 + ǫi (3.2.2)

for 0 ≤ i ≤ n, where the {ǫi} are uncorrelated with mean zero and variance σ2
ǫ > 0.

This is the model for Y0, . . . , Yn that specifies the first two moments of (Y0,Y
n). An

alternate statement of this model is that Y0, . . . , Yn are uncorrelated with mean β0

and positive variance. Suppose that F is defined to be the set of those distributions

(3.2.2) where β0 is a given nonzero value, but σ2
ǫ > 0 is positive but otherwise

unknown. Any

Ŷ0 = a0 + a⊤Yn

is an LP of Y0.

Which of these LPs are unbiased? By definition, the linear predictor Ŷ0 is unbi-

ased with respect to F provided

3.2 Predictors Basics 57

E
{
Ŷ0

}
= E

a0 +

n∑

i=1

aiYi

 = a0 + β0

n∑

i=1

ai

set
= E {Y0} = β0 (3.2.3)

for all σ2
ǫ > 0. Because (3.2.3) is independent of σ2

ǫ , the definition of unbiased is

automatically true for F ∈ F as long as (a0, a) satisfies

a0 + β0

n∑

i=1

ai = β0 (3.2.4)

for the given β0. One class of solutions of (3.2.4) is a0 = β0 and any a satisfying∑n
i=1 ai = 0; any such solution gives the (data independent) predictor Ŷ0 = β0. Other

LUPs result by choosing a0 = 0 and any a for which
∑n

i=1 ai = 1; in particular, the

sample mean of Y1, . . . , Yn is the LUP of Y0 corresponding to a1 = · · · = an = 1/n

(and a0 = 0).

Now consider the (enlarged) family F of moment models corresponding to

(3.2.2) where β0 is an unspecified real number and σ2
ǫ is positive but unknown.

In this case the linear predictor Ŷ0 is unbiased with respect to F provided (3.2.4)

holds for all β0 ∈ IR and for all σ2
ǫ > 0. This condition holds if and only if a0 = 0

and
∑n

i=1 ai = 1 (the necessity of the first follows by considering the case β0 = 0 and

the second from β0 , 0). Thus the sample mean of the training data is an LUP of

β0 but no constant predictor is an LUP. This example illustrates the general fact that

every LUP with respect to F is also an LUP with respect to subfamilies of F . �

3.2.2 Best MSPE Predictors

Historically, the most widely used prediction criterion is the mean squared predic-

tion error (MSPE). When F(·) is the joint distribution of (Y0,Y
n), the MSPE of

Ŷ0 = Ŷ0(Yn) is

MSPE(Ŷ0, F) ≡ EF{(Ŷ0 − Y0)2}. (3.2.5)

Definition The predictor Ŷ0 of Y0 is a minimum MSPE predictor at F provided

MSPE(Ŷ0, F) ≤ MSPE(Y⋆
0 , F) (3.2.6)

for any alternative predictor Y⋆
0

.

Minimum MSPE predictors are also called best MSPE predictors. Predictors of

practical importance will simultaneously minimize the MSPE for many distribu-

tions F.

The fundamental theorem of prediction shows that the conditional mean of Y0

given Yn is the minimum MSPE predictor of Y0 based on Yn.

58 3 Prediction Methodology

Theorem 3.1. Suppose that (Y0,Y
n) has a joint distribution F for which the condi-

tional mean of Y0 given Yn exists. Then

Ŷ0 = E{Y0 |Yn}

is the best MSPE predictor of Y0.

Proof: Fix an arbitrary unbiased predictor Y⋆
0
= Y⋆

0
(Yn),

MSPE(Y⋆
0 , F) = EF{(Y⋆

0 − Y0)2}
= EF

{
(Y⋆

0 − Ŷ0 + Ŷ0 − Y0)2
}

= EF

{
(Y⋆

0 − Ŷ0)2
}
+MSPE(Ŷ0, F)

+ 2EF

{
(Y⋆

0 − Ŷ0)(Ŷ0 − Y0)
}

≥ MSPE
(
Ŷ0, F

)

+ 2EF

{(
Y⋆

0 − Ŷ0

) (
Ŷ0 − Y0

)}
(3.2.7)

= MSPE
(
Ŷ0, F

)
,

where the final equality holds because

EF

{(
Y⋆

0 − Ŷ0

) (
Ŷ0 − Y0

)}
= EF

{(
Y⋆

0 − Ŷ0

)
EF

{(
Ŷ0 − Y0

)
|Yn

}}

= EF

{(
Y⋆

0 − Ŷ0

) (
Ŷ0 − EF {Y0 |Yn}

)}

= EF

{(
Y⋆

0 − Ŷ0

)
× 0

}

= 0. �

There are two interesting properties of the best MSPE predictor that can be seen

from the proof of Theorem 3.1. The first is that the conditional mean Ŷ0 is essentially

the unique best MSPE predictor in many cases that arise in practice. This is because

MSPE(Ŷ0, F) and MSPE(Y⋆
0
, F) are equal if and only if equality holds in (3.2.7),

which occurs when Ŷ0 = Y⋆
0

almost everywhere. The second is that Ŷ0 = E{Y0 |Yn}
must be unbiased with respect to the model F for (Y0,Y

n) because

E{Ŷ0} = E{E{Y0 |Yn}} = E{Y0}.

Example 3.1. (Continued–best MSPE predictors) Consider finding the minimum

MSPE predictor Ŷ0 = E{Y0 |Yn}when the components of (Y0,Y
n) are not merely un-

correlated but are independent N(β0, σ
2
ǫ) random variables. By the independence of

Y0, Y1, . . . , Yn, the conditional distribution [Y0 |Yn] is simply the N(β0, σ
2
ǫ) marginal

distribution of Y0. In particular,

Ŷ0 = E{Y0 |Yn} = β0

3.2 Predictors Basics 59

is the best MSPE predictor. Notice that this minimum MSPE predictor changes with

β0 and thus is specific to this particular (Y0,Y
n) joint distribution.

Now consider a more interesting two-stage model for the distribution of (Y0,Y
n).

Assume that σ2
ǫ is known and that the distribution specified in the previous para-

graph is the first-stage (conditional) distribution of (Y0,Y
n) given β0, denoted by

[Y0,Y
n | β0]. Combine this first-stage distribution with the non-informative second-

stage distribution

[β0] ∝ 1

for β0. While improper priors need not produce proper posterior distributions, in this

case one can show

[Y0,Y
n] =

∫
[Y0,Y

n | β0] [β0] dβ0

gives a proper joint distribution of (Y0,Y
n). Using this (Y0,Y

n) distribution, the con-

ditional distribution

[Y0 |Yn = Yn] ∼ N1

[
Yn, σ

2
ǫ

(
1 +

1

n

)]

can be calculated where Yn = (
∑n

i=1 yi)/n is the sample mean of the training data.

It follows that, for this two-stage model, the minimum MSPE predictor of Y0 is

Ŷ0 = (
∑n

i=1 Yi)/n. �

Example 3.2. (More best MSPE predictors) Consider the regression model devel-

oped in Chapter 2 in which

Yi ≡ Y(xi) =

p∑

j=1

f j(xi)β j + Z(xi) = f⊤(xi)β + Z(xi) (3.2.8)

for 0 ≤ i ≤ n, where the { f j(·)} are known regression functions, β is a given nonzero

p × 1 vector, and Z(x) is a zero mean stationary Gaussian process with dependence

specified by the covariance

Cov{Z(xi), Z(x j)} = σ2
Z
R(xi − x j)

for some known correlation function R(·) (see Section ??). Then the joint distribution

of Y0 = Y(x0) and Yn = (Y(x1), . . . , Y(xn))⊤ is the multivariate normal distribution

(
Y0

Yn

)
∼ N1+n

[(
f⊤0
F

)
β, σ2

Z

(
1 r⊤

0

r0 R

)]
, (3.2.9)

where f 0 = f (x0) is the p × 1 vector of regressors at x0, F is the n × p matrix of

regressors having (i, j)th element f j(xi) for 1 ≤ i ≤ n, 1 ≤ j ≤ p, β is a p×1 vector of

unknown regression coefficients, and the n × 1 vector r0 = (R(x0 − x1), . . . ,R(x0 −
xn))⊤ and n × n matrix R = (R(xi − x j)) are defined in terms of the correlation

function R(·). Assuming that the design matrix F is of full column rank p and that

R is positive definite, Theorems 3.1 and B.2 show that

60 3 Prediction Methodology

Ŷ0 = E {Y0 |Yn} = f⊤0 β + r⊤0 R−1 (Yn − Fβ) (3.2.10)

is the best MSPE predictor of Y0.

The class of distributions F for which (3.2.10) is the minimum MSPE predic-

tor is again embarrassingly small. In addition to Ŷ0 depending on the multivariate

normality of (Y0,Y
n), it also depends on both β and the specific correlation function

R(·). Thus the best MSPE predictor changes when either β or R(·) changes, however,

Ŷ0 is the same for all σ2
Z
> 0.

As a final illustration, consider finding the minimum MSPE predictor of Y(x0)

based the following two-stage model for the regression data (xi, Y(xi)), 0 ≤ i ≤ n.

Suppose that (3.2.9) specifies the conditional distribution of (Y0,Y
n) given β as the

first stage of a two-stage model. (Assuming σ2
Z

is known, say, although this is not

needed). The second stage of the model puts an arbitrary prior on (β, σ2
Z
). The best

MSPE predictor of Y0 is

Ŷ0 = E {Y0 |Yn } = E {E {Y0 | Yn, β} | Yn}
= E

{
f⊤0 β + r⊤0 R−1 (Yn − Fβ)

∣∣∣ Yn
}

and the last expectation is with respect to the conditional distribution of β given Yn.

Thus

Ŷ0 = f⊤0 E {β | Yn} + r⊤0 R−1 (Yn − FE {β|Yn}) (3.2.11)

is the minimum MSPE predictor of Y0 for any two-stage model whose first stage is

given by (3.2.9) and has arbitrary second stage β prior for which E {β|Yn} exists.

Of course, the explicit formula for E {β|Yn}, and hence Ŷ0, depends on the β

prior. For example, when β has the non-informative prior, [β] ∝ 1, the conditional

distribution [β|Yn] can be derived by observing

[β|Yn = yn] ∝ [yn|β] [β]

∝ exp

{
− 1

2σ2
Z

(yn − Fβ)⊤ R−1 (yn − Fβ)

}
× 1

∝ exp

{
− 1

2σ2
Z

(
β⊤F⊤R−1Fβ − 2β⊤F⊤R−1yn

)}

= exp

{
−1

2
β⊤A−1β + ν⊤β

}
, say,

where A−1 = F⊤(σ2
Z
R)−1F and ν = F⊤(σ2

Z
R)−1yn. Notice that rank(A) = p un-

der the continuing assumption that F has full column rank p. Applying (B.1.2) of

Appendix B gives

[β|Yn] ∼ Np

[
(F⊤R−1 F)−1F⊤R−1Yn, σ2

Z
(F⊤R−1F)−1

]

because the σ2
Z

terms cancel in the expression for the mean of β|Yn. Thus the best

MSPE predictor of Y0 under this two-stage model is

3.2 Predictors Basics 61

Ŷ0 = f⊤0 β̂ + r⊤0 R−1
(
Yn − Fβ̂

)
, (3.2.12)

where β̂ = (F⊤R−1F)−1F⊤R−1Yn. �

There are at least three useful ways of thinking about the predictor (3.2.12). The

first way is to regard (3.2.12) as the sum of the regression predictor of f⊤0 β̂ plus

the “correction” r⊤
0

R−1
(
Yn − Fβ̂

)
. The second way of viewing (3.2.12) is as a func-

tion of the training data Yn; this viewpoint is important for describing the statistical

properties of Ŷ0. The final method of examining formula (3.2.12) is as a function of

x0, the point at which the prediction is to be made. The remainder of this subsection

and Example 3.3 considers the nature of the correction in Ŷ0. We will return to the

latter two methods of thinking about Ŷ0 in Section 3.3.

The correction term in (3.2.12) is r⊤
0

R−1
(
Yn − Fβ̂

)
, which is a linear combination

of the residuals Yn − Fβ̂ based on the model (3.2.8) with prediction point specific

coefficients, i.e.,

r⊤0 R−1
(
Yn − Fβ̂

)
=

n∑

i=1

ci(x0)
(
Yn − Fβ̂

)
i
, (3.2.13)

where the weight ci(x0) is the ith element of R−1r0 and
(
Yn − Fβ̂

)
i
is the ith residual

based on the fitted model.

Example 3.3. To illustrate the regression and correction terms in the predictor

(3.2.12), suppose the true unknown curve is the one-dimensional dampened cosine

function

y(x) = e−1.4x cos(7πx/2)

over 0 ≤ x ≤ 1 (see the top panel in Figure 3.1). We use a seven point training

data set (also shown in Figure 3.1). The training data locations xi were determined

by selecting x1 at random in the interval [0 , 1/7] and then adding i/7 to x1 for

1 ≤ i ≤ 6 to obtain six additional points. These next six xi are equally spaced

and located in the intervals [1/7, 2/7], . . . , [6/7, 1]. The choice of a design of the

computer experiment will be discussed in Chapters 4 and 5.

Consider prediction of y(·) based on the stationary stochastic Gaussian process

Y(x) = β0 + Z(x),

where Z(·) has zero mean, variance σ2
Z
, (Gaussian) correlation function

R(h) = e−136.1×h2

.

Here F = 17 is a 7× 1 column vector of ones and, by (3.2.13), the predictor (3.2.12)

is

Ŷ(x0) = β̂0 +

7∑

i=1

ci(x0)
(
Yi − β̂0

)

62 3 Prediction Methodology

when viewed as a function of x0 where {xi}7i=1
are the training data and (Yi − β̂0) is

the ith residual from fitting the constant model. In this case, the regression predictor

is β̂0.

Consider specifically the prediction of y(x0) at x0 = 0.55. The seven residuals

Yi − β̂0 and their associated weights ci(0.55), 1 ≤ i ≤ 7, are plotted in Figure 3.1.

Notice that (1) the weights can be positive or negative and (2) the correction to the

0.0 0.2 0.4 0.6 0.8 1.0

x

-0
.5

0.
0

0.
5

1.
0

y(
x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.
0

0.
4

c i(0
.5

5)

Fig. 3.1 The top panel shows the true curve y(x) = exp{−1.4x} × cos(3.5πx) (solid line); the seven

point input training data (dots); the BLUP at x0 = 0.55 (cross); and the residuals, Yi − β̂0, (vertical

dotted lines). The bottom panel plots the weight at each training data point as a line segment of

length |ci(0.55)| from the origin with negative ci(0.55) plotted downward and positive ci(0.55)

plotted upward.

regression β̂0 is based primarily on the residuals at the two training sites nearest to

x0 = 0.55; in fact, the three weights for the three training data points that are furthest

from x0 = 0.55 are indistinguishable from zero. �

Returning to the general discussion of the correction r⊤
0

R−1(Yn − Fβ̂), we show

that this term forces the predictor to interpolate the training data. To see why this is

the case, suppose that x0 = xi for some fixed i, 1 ≤ i ≤ n. Then f 0 = f⊤(xi) and

r⊤0 = (R(xi − x1),R(xi − x2), . . . ,R(xi − xn))

which is the ith row of R. Thus R−1r0 = (0, . . . , 0, 1, 0, . . . , 0)⊤ = ei, the ith unit

vector, because this product is the ith column of R−1R = In, the n × n identity

3.2 Predictors Basics 63

matrix. Hence

r⊤0 R−1
(
Yn − Fβ̂

)
= e⊤i

(
Yn − Fβ̂

)
= Yi − f⊤(xi)̂β

and so

Ŷ(x0) = f⊤(xi)̂β +
(
Yi − f⊤(xi)̂β

)
= Yi .

Although we focus on the case of nonzero dependence in this book, we note that

the argument above shows that for regression data with white noise (independent)

measurement errors added to the mean of each observation, i.e., when the Y1, . . . , Yn

are independent with Yi having mean f⊤(xi)β, then r0 = (0, . . . , 0)⊤. In this case the

best MSPE predictor, expression (3.2.12), reduces to Ŷ(x0) = f⊤(x0)̂β for x0 , xi

where β̂ is the ordinary least squares estimator of the mean of Y(x0) and Ŷ(x0) = Yi

for x0 = xi. Thus the best MSPE predictor interpolates the data but has discontinu-

ities at each of the data points.

Expression (3.2.12) is the basis for most predictors used in computer experi-

ments. The next subsection shows that (3.2.12) has additional optimality properties

that help explain its popularity. Before beginning this topic, we present a final exam-

ple to show that best MSPE predictors need not be a linear function of the training

data lest the previous (Gaussian model) examples, where the predictors are all linear

in the data, suggest otherwise to the reader.

Example 3.4. Suppose that (Y0, Y1) has the joint distribution given by the density

f (y0, y1) =


1/y2

1
, 0 < y1 < 1, 0 < y0 < y2

1

0 , otherwise.

Then it is straightforward to calculate that the conditional distribution of Y0 given

Y1 = y1 is uniform over the interval (0, y2
1
). Hence the best MSPE predictor of Y0 is

the center of this interval, i.e., Ŷ0 = E{Y0|Y1} = Y2
1
/2 which is nonlinear in Y1. In

contrast, the minimum MSPE linear unbiased predictor of Y0 is that a0+a1Y1 which

minimizes E{(a0 + a1Y1 − Y0)2} among those (a0, a1) that satisfy the unbiasedness

requirement E{a0 + a1Y1} = E{Y0}. Unbiasedness leads to the restriction

a0 + a1

1

2
=

1

6
or a0 =

1

6
− a1

1

2
.

Applying calculus to minimize the MSPE

E



((
1

6
− a1

1

2

)
+ a1Y1 − Y0

)2


(expressed in terms of a1) shows that a1 = 1/2 (and a0 = 1/6 − a1/2 = −1/12), i.e.,

ŶL
0
= − 1

12
+ 1

2
Y1 is the minimum MSPE linear unbiased predictor of Y0.

As Figure 3.2 shows, the predictors Ŷ0 and ŶL
0

are very close over their (0, 1)

domain. The MSPE of Ŷ0 is obtained from

64 3 Prediction Methodology

Fig. 3.2 The predictors Ŷ0 and ŶL
0

based on y1 ∈ (0, 1)

E

{(
Y0 − Y2

1/2
)2
}
= E

{
E

{
(Y0 − Y2

1/2)2
∣∣∣ Y1

}}

= E {Var{Y0|Y1}}
= E

{
Y2

1/12
}

(3.2.14)

= 1/60 ≅ 0.01667.

The inner term Y2
1
/12 in (3.2.14) is the variance of the uniform distribution over

(0, y2
1
). A similar calculation gives the MSPE of ŶL

0
to be 0.01806 which is greater

than the MSPE of the unconstrained predictor, as theory dictates, but the difference

is small, as Figure 3.2 suggests. �

3.2.3 Best Linear Unbiased MSPE Predictors

As we have seen, minimum MSPE predictors depend in detail on the joint distribu-

tion of the training data and Y0; this criterion typically leads to optimality within a

very restricted class of competing predictors. In an attempt to find predictors that

are optimal for a broader class of models, we focus on the two simpler types of

predictors that were introduced in Example 3.4. Firstly we consider the class of Y0

3.2 Predictors Basics 65

predictors that are linear in Yn, and secondly the class of predictors that are both

linear and unbiased for Y0.

The predictor Ŷ0 is a minimum MSPE linear predictor of Y0 at F provided Ŷ0 is

linear and

MSPE(Ŷ0, F) ≤ MSPE(Y⋆
0 , F) (3.2.15)

for any other linear predictor Y⋆
0

. Minimum MSPE linear predictors are sometimes

called best linear predictors (BLPs).

Restricting further the class of predictors to those that are both linear and unbi-

ased, one can again seek optimal MSPE predictors. To apply such a strategy, one

must first determine which linear predictors are unbiased. Recall that unbiasedness

is determined with respect to a family F of distributions. In the computer experi-

ment literature, the emphasis is on finding a linear predictor Ŷ0 = a0 + a⊤Yn that

is unbiased with respect to every F in some family of distributions F and simul-

taneously minimizes the MSPE at F in the same family F . Given F , a predictor

Ŷ0 = a0 + a⊤Yn which is unbiased for F that satisfies (3.2.15) for F ∈ F is said

to be minimum MSPE linear unbiased or simply a best linear unbiased predictor

(BLUP).

Example 3.5. Consider best linear unbiased prediction for the nonparametric loca-

tion parameter model (3.2.2) introduced in Example 3.1 where β0 is fixed, i.e., for

the family of distributions F = F (β0). Recall that Ŷ0 = a0 + a⊤Yn is unbiased pro-

vided a0 + β0

∑n
i=1 ai = β0. The MSPE of the unbiased predictor Ŷ0 = a0 + a⊤Yn

is

E



a0 +

n∑

i=1

aiYi − Y0


2 = E



a0 +

n∑

i=1

ai(β0 + ǫi) − β0 − ǫ0


2

=

a0 + β0

n∑

i=1

ai − β0


2

+ σ2
ǫ ×

n∑

i=1

a2
i + σ

2
ǫ

= σ2
ǫ ×

1 +
n∑

i=1

a2
i

 (3.2.16)

≥ σ2
ǫ (3.2.17)

Equality holds in (3.2.16) because Ŷ0 is unbiased and equality occurs in (3.2.17) if

and only if a0 = β0 and a1 = . . . = an = 0, which shows that

Ŷ0 = β0

66 3 Prediction Methodology

is the unique BLUP for model F . For this example, as for previous examples that

determined various types of best MSPE predictors, the BLUP depends heavily on

F .

Now consider the BLUP with respect to the enlarged model F = F (IR) where

β0 is an unknown real number and σ2
ǫ > 0. For this F , recall that every unbiased

Ŷ0 = a0 + a⊤Yn must satisfy a0 = 0 and
∑n

i=1 ai = 1. The MSPE of Ŷ0 is

E




n∑

i=1

aiYi − Y0


2 =

β0

n∑

i=1

ai − β0


2

+ σ2
ǫ ×

n∑

i=1

a2
i + σ

2
ǫ

= 0 + σ2
ǫ ×

1 +
n∑

i=1

a2
i

 (3.2.18)

≥ σ2
ǫ (1 + 1/n), (3.2.19)

where equality holds in (3.2.18) because
∑n

i=1 ai = 1 and the minimum in (3.2.19)

is calculated by observing that
∑n

i=1 a2
i

is minimized subject to
∑n

i=1 ai = 1 when

ai = 1/n for 1 ≤ i ≤ n. This tells us that the sample mean Ŷ0 =
1
n

∑n
i=1 Yi is the

best linear unbiased predictor of Y0 for the enlarged F . The formula (3.2.19) for its

MSPE is familiar from regression;σ2
ǫ /n is the variance of the sample mean 1

n

∑n
i=1 Yi

while the “extra” σ2
ǫ accounts for the additional variability of Y0. �

Example 3.6. (BLUP for a measurement error model) Suppose that

Yi ≡ Y(xi) =

p∑

j=1

f j(xi)β j + ǫi = f⊤(xi)β + ǫi

for 0 ≤ i ≤ n, where the { f j} are known regression functions, β = (β1, . . . , βp)⊤

is unknown, and the measurement errors {ǫi} are uncorrelated with common mean

zero and common variance σ2
ǫ . Consider the BLUP of Y0 = Y(x0) for the moment

model F , where β ∈ IRp and σ2
ǫ > 0 but both are otherwise unknown. The predictor

Ŷ0 = a0 + a⊤Yn is unbiased with respect to F provided

E
{
a0 + a⊤Yn

}
= a0 + a⊤Fβ

set
= E {Y0} = f⊤0 β

for all (β, σ2
ǫ), where f 0 = f (x0). This is equivalent to

a0 = 0 and F⊤a = f 0. (3.2.20)

In the Chapter Notes, Subsection 3.6, we show that the BLUP of Y0 is

Ŷ0 = f⊤0 β̂, (3.2.21)

where β̂ = (F⊤F)−1F⊤Yn is the ordinary least squares estimator of β and that the

BLUP is unique. �

3.3 BLUPs and Empirical BLUPs 67

In the next section, we turn specifically to the problem of prediction for computer

experiments. We begin our discussion with the Gaussian stochastic process model

introduced in Section 2.3 and then derive predictors of Y(x0) when β is unknown,

first when the correlation function is known and then when it is unknown.

3.3 Empirical Best Linear Unbiased Prediction

3.3.1 Introduction

Many types of analyses of computer experiment output are facilitated by having

available easily-computed approximations to the computer code. Such approxima-

tions are often called surrogates in the global optimization literature (Booker et al

(1999)) and simulators in the engineering literature (Bernardo et al (1992)). Neural

networks, splines, and predictors based on Gaussian process models are some of

the approximation methods that have been used to form predictors for the output

from computer experiments. We emphasize the latter for three reasons: the assump-

tions that lead to these predictors are explicitly stated; several familiar predictors,

including linear and cubic splines, are special cases; and such predictors use data-

dependent scaling of each input dimension.

The basis for most practical predictors is the Gaussian random function model

introduced in Section 2.3. Recall that this model regards the deterministic computer

output y(·) as the realization of the random function

Y(x) =

p∑

j=1

f j(x)β j + Z(x) = f⊤(x)β + Z(x), (3.3.1)

where f1(·), . . . , fp(·) are known regression functions, β = (β1, . . . , βp)⊤ is a vector

of unknown regression coefficients, and Z(·) is a stationary Gaussian process on X
having zero mean, variance σ2

Z
, and correlation function R(·).

Suppose that the training data consists of the computer output at the input sites x1,

. . . , xn and that y(x0) is to be predicted. The model (3.3.1) implies that Y0 = Y(x0)

and Yn = (Y(x1), . . . , Y(xn))⊤ has the multivariate normal distribution

(
Y0

Yn

)
∼ N1+n

[(
f⊤0
F

)
β, σ2

Z

(
1 r⊤

0

r0 R

)]
, (3.3.2)

where f 0 = f (x0) is the p × 1 vector of regression functions for Y(x0), F = (f j(xi))

is the n × p matrix of regression functions for the training data, r0 = (R(x0 −
x1), . . . ,R(x0 − xn))⊤ is the n × 1 vector of correlations of Yn with Y(x0), and

R = (R(xi − x j)) is the n × n matrix of correlations among the Yn. The parame-

ters β ∈ IRp and σ2
Z
> 0 are unknown.

The following discussion applies the development of Section 3.2 to find the

BLUP of Y(x0) under the following enlargement of the normal theory model (3.3.2).

68 3 Prediction Methodology

Drop the Gaussian assumption in (3.3.2) to make the model a nonparametric, mo-

ment model based on an arbitrary second-order stationary process. It is assumed that

(Y0,Y
n) satisfy

(
Y0

Yn

)
∼

[(
f⊤0
F

)
β , σ2

Z

(
1 r⊤

0

r0 R

)]
, (3.3.3)

where β and σ2
Z
> 0 are unknown.

Begin by considering the conceptual case in which the correlation function R(·)

is known (and hence r0 and R are also known). In this case Subsection 3.6 of the

Chapter Notes shows that

Ŷ(x0) = Ŷ0 ≡ f⊤0 β̂ + r⊤0 R−1(Yn − Fβ̂), (3.3.4)

is the BLUP of Y(x0) with respect to the family of distributions (3.3.3). In (3.3.4)

β̂ = (F⊤R−1 F)−1F⊤R−1Yn is the generalized least squares estimator of β. Of course,

both r0 and R are determined when the correlation function R(·) is known. However

both β ∈ IRp and σ2
Z
> 0 are unknown.

In Section 3.2 we proved that (3.3.4) is the best MSPE predictor among all pre-

dictors under a two-stage model whose first stage was the Gaussian model (3.3.2).

Here we increase the size of the model class by not specifying the first two moments

of Y(x), i.e., β and σ2
Z

are unknown in (3.3.3), but restrict the class of predictors to

linear predictors that are unbiased with respect to any model of the form (3.3.3).

We complete this discussion by stating three properties of the predictor (3.3.4)

under (3.3.3). First, Ŷ0 interpolates the training data (xi, Y(xi)) for 1 ≤ i ≤ n (Sec-

tion 3.2). Second, (3.3.4) is a LUP of Y(x0); as shown below, this fact permits the

straightforward derivation of its variance optimality. Linearity follows by substitut-

ing β̂ into Ŷ0 yielding

Ŷ0 =
[
f⊤0 (F⊤R−1F)−1F⊤R−1

+ r⊤0 R−1(In − F(F⊤R−1F)−1F⊤R−1)
]

Yn

≡ a⊤∗ Yn, (3.3.5)

where (3.3.5) defines a∗. Unbiasedness with respect to (3.3.3) holds because for any

β ∈ IRp and every σ2
Z
> 0,

E{Ŷ0} = a⊤∗ E{Yn}
= a⊤∗ Fβ

= [f⊤0 In + r⊤0 R−1(F − FIn)]β (3.3.6)

= f⊤0 β

= E{Y(x0)},

where (3.3.6) holds by substituting for a∗ in (3.3.5).

3.3 BLUPs and Empirical BLUPs 69

Third, we determine the behavior of Ŷ0 = Ŷ(x0) as a function of x0. This can

be easily discerned because (3.3.4) depends on x0 only through the n × 1 vector

r0 = r(x0) = (R(x0 − x1), . . . ,R(x0 − xn))⊤ and f (x0). Hence

Ŷ(x0) =

p∑

j=1

β̂ j f j(x0) +

n∑

i=1

diR (x0 − xi) , (3.3.7)

where d = (d1, . . . , dn)⊤ = R−1(Yn−Fβ̂). In the special case Y(x) = β0+Z(x), Ŷ(x0)

depends on x0 only through R(x0 − xi). The “smoothness” characteristics of Ŷ(x0)

are inherited from those of R(·). For x0 “near” any xi (more precisely, in the limit as

x0 approaches xi), the behavior of Ŷ(x0) depends on that of R(·) at the origin.

Example 3.7. As in Example 3.3, suppose that

f (x) = e−1.4x cos(7πx/2),

a dampened cosine curve over 0 ≤ x ≤ 1, is the true output function. Figure 3.3

shows f (x) as a solid line and the set of n = 7 points that we previously introduced

as training data. Example 3.3 emphasized the role of the residuals in interpreting the

BLUP (3.3.4) of Y(x0). We complete this example by re-examining the BLUP, this

time as a function of x0. Because the known correlation function for this example is

R(h) = e−136.1×h2

,

we have

Ŷ(x0) =

7∑

i=1

di exp{−136.1(xi − x0)2}, (3.3.8)

where {xi}7i=1
are inputs for the training data and (d1, . . . , d7) are calculated from the

expression following (3.3.7). Figure 3.3 shows that Ŷ(x0) does interpolate the train-

ing data. Because each exponential component of (3.3.8) is infinitely differentiable

in x0, Ŷ(x0) is also infinitely differentiable in x0. �

3.3.2 Prediction When the Correlation Function is Unknown

The basic strategy is to predict y(x0) by

Ŷ(x0) = Ŷ0 ≡ f⊤0 β̂ + r̂
⊤
0 R̂
−1 (

Yn − Fβ̂
)
, (3.3.9)

where β̂ = (F⊤R̂
−1

F)−1F⊤R̂
−1

Yn and the estimates R̂ and r̂0 are determined from

an estimator of the correlation function R(·). Such predictors are called empirical

best linear unbiased predictors (EBLUPs) of Y(x0), despite the fact that they are

70 3 Prediction Methodology

Fig. 3.3 True curve y(x) = exp{−1.4x} × cos(3.5πx) (solid line), a seven point input design (dots),

and the BLUP Ŷ(x0) for x0 ∈ [0, 1.0] (dotted line)

typically no longer linear in the training data Yn (R̂ = R̂(Yn) and r̂0 = r̂0(Yn) are

usually highly nonlinear in Yn) nor need they be unbiased for Y(x0) (although see

Kackar and Harville (1984)). Different EBLUPs correspond to different estimators

of R(·).

Virtually all estimators of the correlation function that have appeared in the lit-

erature assume that R(·) = R(·|ψ), where ψ is a finite vector of parameters. As an

example, the exponential correlation function

R(h|ψ) = exp


−

d∑

j=1

|h j/θ j|p j



has d scale parameters θ1, . . . , θd and d power parameters p1, . . . , pd so that ψ

= (θ1, . . . , θd, p1, . . . , pd) contains 2 × d components. In this case, the correlation

matrix R = R(ψ) depends on ψ as does the vector of correlations r0 = r0(ψ). We

describe four methods of estimatingψ that lead to four different EBLUPs. All except

the “cross-validation” estimator of ψ assume that the training data have the Gaussian

conditional distribution

[Yn|β, σ2
Z
,ψ] ∼ Nn

[
Fβ, σ2

Z
R
]
. (3.3.10)

3.3 BLUPs and Empirical BLUPs 71

Furthermore, the Bayes predictor assumes that prior information is available con-

cerning model parameters.

We focus on the estimation of the correlation parameters ψ and not the process

variance, σ2
Z
. This is because the predictor Ŷ0 depends only on ψ and is independent

of σ2
Z
. However, in Section ?? (for example, formula (4.1.12)), we will see that σ2

Z

is required to estimate the posterior variance of the predictor at each new training

site x0. Except for cross validation, all the methods we present below can be used to

estimate σ2
Z
.

3.3.2.1 Maximum Likelihood EBLUPs

Perhaps the most popular choice of ψ estimator is the maximum likelihood estimate

(MLE). Using the multivariate normal assumption, the log likelihood is (up to an

additive constant)

ℓ(β, σ2
Z
,ψ) = −1

2

[
n logσ2

Z
+ log(det(R)) + (yn − Fβ)⊤R−1(yn − Fβ)/σ2

Z

]
,

(3.3.11)

where det(R) denotes the determinant of R. Givenψ, the MLE of β is its generalized

least squares estimate

β̂ = β̂(ψ) =
(
F⊤R−1F

)−1
F⊤R−1yn (3.3.12)

and the MLE of σ2
Z

is

σ̂2
Z = σ̂

2
Z (ψ) =

1

n

(
yn − Fβ̂

)⊤
R−1

(
yn − Fβ̂

)
. (3.3.13)

Substituting these values into Equation (3.3.11), we obtain that the maximum of

(3.3.11) over β and σ2
Z

is

ℓ(̂β, σ̂2
Z ,ψ) = −1

2

[
n log σ̂2

Z (ψ) + log(det(R(ψ))) + n

]
,

which depends on ψ alone. Thus the MLE chooses ψ̂ to minimize

n log σ̂2
Z (ψ) + log (det (R(ψ))) , (3.3.14)

where σ̂2
Z is defined by (3.3.13). The predictor corresponding to ψ̂ is called an MLE-

EBLUP of Y(x0).

For the Gaussian stochastic process model, the SAS procedure PROC Mixed

and program GaSP (Gaussian Stochastic Process, Welch et al (1992)) can calculate

MLEs of the parameters for the product power exponential correlation function. The

program PErK (Parametric EmpiRical Kriging, Williams (2001)) can calculate the

MLEs of the parameters for both the product power exponential and product Matérn

correlation functions.

72 3 Prediction Methodology

3.3.2.2 Restricted Maximum Likelihood EBLUPs

Again assume that R(·) (and hence R and r0) depends on an unknown finite vector

of parameters ψ. Restricted (residual) maximum likelihood estimation (REML) of

variance and covariance parameters was introduced by Patterson and Thompson

(1971) as a method of determining less biased estimates of such parameters than

maximum likelihood estimation (see also Patterson and Thompson (1974)). Some

authors use the term marginal maximum likelihood estimates for the same concept.

The REML estimator of ψ maximizes the likelihood of a maximal set of linearly

independent combinations of the Yn where each linear combination is orthogonal to

Fβ, the mean vector of Yn. Assuming that F is of full column rank p, this method

corresponds to choosing an (n − p) × n matrix C of full row rank n − p that satisfies

CF = 0, and the REML estimator of ψ is the maximizer of the likelihood of the

transformed “data”

W ≡ CYn ∼ N
[
CFβ = 0, σ2

Z
CR(ψ)C⊤

]
. (3.3.15)

Notice that W contains p fewer “observations” than Yn but W has the advantage that

these data contain none of the unknown parameters β.

As an example, consider the simplest linear model setting, that of independent

and identically distributed N(β0, σ
2) observations Y1, . . . , Yn. In this case, p = 1.

The MLE of σ2 based on the Y1, . . . , Yn is
∑n

i=1(Yi − Y)2/n, which is a (downward)

biased estimator of σ2. One set of linear combinations having the orthogonality

property CF = 0 is obtained as follows. Let Y be the mean of Y1, . . . , Yn. The

linear combinations W1 = Y1 − Y , . . . , Wn−1 = Yn−1 − Y each have mean zero and

correspond to multiplying Yn by an easily described (n− 1)× n matrix C having full

row rank n − 1. Maximizing the likelihood based on W1,. . . , Wn−1 and expressing

the result in terms of Y1,. . . , Yn gives

n∑

i=1

(Yi − Y)2/(n − 1) .

The n − 1 divisor in the error sum of squares produces an unbiased estimator of σ2
Z
.

Returning to the general case, it can be shown that the REML estimator of ψ

is independent of the choice of linear combinations used to construct Wn subject

to the number of columns of C being maximal in the sense of C having rank n −
p (Harville (1974), Harville (1977)). With some algebra it can be shown that the

REML estimator of σ2
Z

is

σ̃2
Z =

n

n − p
σ̂2

Z =
1

n − p

(
yn − Fβ̂

)⊤
R−1

(
yn − Fβ̂

)
,

where σ̂2
Z is the MLE, formula (3.3.13), of σ2

Z
and the REML estimator of ψ is the

minimizer of

(n − p) log σ̃2
Z + log(det(R(ψ))). (3.3.16)

3.3 BLUPs and Empirical BLUPs 73

3.3.2.3 Cross-Validation EBLUPs

Cross-validation is a popular method for choosing model parameters in paramet-

ric model settings. Important early references describing cross-validation are Allen

(1974), Stone (1974), and Stone (1977); Hastie et al (2001) summarize recent ap-

plications.

We again assume that the correlation function is parametric with R(·) = R(·|ψ)

so that R = R(ψ) and r0 = r0(ψ). For i = 1, . . . , n let Ŷ−i(ψ) denote the predictor

(3.3.9) of y(xi) when ψ is the true correlation parameter based on all the data except

(xi, y(xi)). The cross-validated estimator of ψminimizes the empirical mean squared

prediction error

XV-PE(ψ) =

n∑

i=1

(Ŷ−i(ψ) − y(xi))
2. (3.3.17)

More general forms of the cross-validation criterion have been proposed by Golub

et al (1979) and Wahba (1980).

3.3.2.4 Posterior Mode EBLUPs

The motivation and form of the posterior mode EBLUP is as follows. Recall that the

minimum MSPE predictor of Y(x0) is E{Y(x0)|Yn} (Theorem 3.1). As described in

Subsection 2.4.6, in fully Bayesian settings where a prior is available for (β, σ2
Z
,ψ),

this conditional mean can be very difficult to compute. To explain why, suppose

conditionally given (β, σ2
Z
,ψ) that Yn is from a GRF and that a prior is available for

[β, σ2
Z
,ψ]. The minimum MSPE predictor is by

E {Y(x0)|Yn} = E {E {Y(x0)|Yn,ψ} |Yn} , (3.3.18)

where the inner expectation on the right-hand side of (3.3.18) is regarded as a func-

tion of ψ and the outer expectation is with respect to the (marginal) posterior distri-

bution
[
ψ|Yn].

The inner expectation (3.3.18) can be calculated by

E {Y(x0)|Yn,ψ} = E
{
(Y(x0), β, σ2

Z
)|Yn,ψ

}
,

which assumes that the conditional [(β, σ2
Z
)|Yn,ψ] is available and the integration

over (β, σ2
Z
) has been performed. Subsection 4.1.3 gives several examples of closed-

form expressions for E {Y(x0)|Yn,ψ}. Even where it can be evaluated in closed form,

this integrand is a very complicated function of ψ. For example, E {Y(x0)|Yn,ψ}
involves the determinant of the correlation matrix as one of several terms in the

examples of Subsection 4.1.3.

Even if E {Y(x0)|Yn,ψ} is known, the density of
[
ψ|Yn] generally cannot be ex-

pressed in closed form. One simple-minded but nevertheless attractive approxima-

tion to the right-hand side of (3.3.18) is

74 3 Prediction Methodology

E{Y(x0)|Yn, ψ̂}, (3.3.19)

where ψ̂ is the posterior mode of
[
ψ|Yn]. The posterior mode of ψ is that ψ̂ that

maximizes

[ψ|Yn] =
[Yn|ψ][ψ]

[Yn]
∝ [Yn|ψ][ψ].

This approximation is based on the (greatly) simplifying assumption that
[
ψ|Yn] is

degenerate with mass located at its mode (Gibbs (1997)). Equation (3.3.19) is the

definition of the posterior mode EBLUP.

While the predictor (3.3.19) uses the correlation parameter that seems “most

likely” as judged by the posterior, the choice of prior for the correlation func-

tion parameters is nontrivial. Subsection 2.4.6 discusses hierarchical models for the

[β, σ2
Z
,ψ] prior.

The harried but Bayesian inclined user may wish to compute the posterior mode

ψ̂ based on a non-informative prior for [ψ], as alluded to in Subsection 2.4.6. Neal

(2003) describes a Monte Carlo algorithm called “slice sampling” that can sample

from this posterior distribution in certain cases (see Robert and Casella (1999) for a

general introduction to Markov Chain Monte Carlo algorithms). The reader should

be warned that correlation parameters are one instance where improper priors can

lead to improper posteriors. Berger et al (2001) proves that, for isotropic correlation

functions, many of the improper priors suggested in the literature yield improper

posteriors. It also proposes an improper prior for default use whose posterior is

proper.

The program PErK can compute the posterior mode EBLUP when the prior sat-

isfies

[β, σ2
Z
,ψ] = [β, σ2

Z
][ψ],

where [β, σ2
Z
] is the proper prior (1) in Table 4.1 and the prior options for [ψ] are

specified in Appendix ??.

3.4 A Simulation Comparison of EBLUPs

Which EBLUP should be used? We summarize the results of a simulation study that

compares the small-sample predictive accuracy of seven predictors. This material is

drawn, in part, from the thesis of Lehman (2002).

In brief, this study was conducted as follows. The seven predictors were cubic

regression, with coefficients estimated by ordinary least squares, and six EBLUPs;

the six EBLUPS were formed by estimating the parameters of two different para-

metric correlation functions using three different methods. Each prediction method

was applied to 200 randomly drawn surfaces on [0, 1]2. The 200 surfaces consist of

50 surfaces generated using each of four stochastic mechanisms. The first group of

surfaces was meant to be “near-cubic” while the last three groups of surfaces were

generated using the krigifier of Trosset (1999) and Trosset and Padula (2000). In

3.5 BLUPs and Empirical BLUPs 75

addition to studying the predictor and the type of surface being predicted, this study

examines the effect of the choice of training sites and the size of the training data

set that is used to form the predictor. Three designs were used: a maximin distance

Latin hypercube design, a Sobol´ sequence, and a D-optimal design. Two sample

sizes were selected for each design criterion: n = 11 (a “small” sample size roughly

corresponding to 5 observations per input dimension) and n = 16 (a “large” sample

size). Larger n produced extremely small empirical mean squared prediction errors

for all designs and did not adequately differentiate them.

The response in this study was the empirical root mean squared prediction error

(ERMSPE). For each predictor, each true surface, and each set of training data (de-

termined by the design and sample size), the estimates of the correlation parameters

and the ERMSPE

ERMSPE =

√√√
1

625

625∑

i=1

(
y(xi) − ŷ(xi)

)2

were computed on a grid of 252 = 625 equispaced points on [0, 1]2. Here y(x) is the

true function value and ŷ(x) is the predicted value. Our primary criterion for judging

each prediction method was its prediction accuracy, as measured by the ERMSPE

over the 200 surfaces. Concerning correlation parameter estimates, we merely note

that the poorer prediction methods consistently had more biased and highly variable

estimates.

We expect, for example, the cubic regression predictor to do well when the train-

ing data are selected according to a D-optimal design and the true surface is near

cubic. This study does have limitations that we will note below. However, it does

provide some guidance about the relative predictive accuracy of these popular pre-

diction methods. Before discussing the results, we describe each of the factors af-

fecting the ERMSPE in more detail.

5

10

15

20

x15

10

15

20

x2

 0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
y(

x1
,x

2)

5

10

15

20

x15

10

15

20

x2

 0
0.

05
0.

10
.1

50
.2

0.
25

0.
3

0.
35

y(
x1

,x
2)

Fig. 3.4 Two of the 50 random y(x1 , x2) surfaces generated by the near-cubic process (3.4.1)

76 3 Prediction Methodology

The 50 near-cubic surfaces were chosen to be of the form

y(x1, x2) = x3
1/3 − (R1 + S 1) x2

1/2 + (R1S 1) x1

+ x3
2/3 − (R2 + S 2) x2

2/2 + (R2S 2)x2

+ A sin

(
2πx1x2

S

)
, (3.4.1)

where the model coefficients (R1, S 1), (R2, S 2), and (A, S) were selected randomly.

The eight coefficients were taken to be mutually independent; R1 and S 1 were dis-

tributed uniformly over the interval (0, 0.5) (denoted U(0, 0.5)), R2 and S 2 were

U(.5, 1.0), A was U(0, .05), and S was U(.04, 1.0). The small amplitude coefficient

of the sin(·) term, A, assured that there were only minor deviations from the cubic

model. Two functions y(·) drawn using this stochastic mechanism are displayed in

Figure 3.4.

The last three groups of surfaces were generated using the krigifier of Trosset

(1999) and Trosset and Padula (2000), which was proposed as a device for generat-

ing random “true” functions. In brief, each surface was the BLUP-type interpolator

y(x1, x2) = β̂ + r(x1, x2)⊤R−1(Y144 − 1144β̂) (3.4.2)

for 0 < x1, x2 < 1, where Y144 was a 144× 1 vector that was drawn from a Gaussian

stochastic process at a 12× 12 equispaced grid of points on [0, 1]2. The components

of y(·) were β̂ = (1⊤144 R−11144)−1 1⊤144 R−1 Y144, r(x1, x2) = r(x) is the 144× 1 vector

with ith component R(xi − x), and R is the 144 × 144 matrix with (i, j)th element

R(xi − x j). The correlation function R(·) was specified to be of Matérn form; each

set of 144 points was drawn from a Gaussian stochastic process that had mean 100,

variance 1, and the Matérn correlation function

R(h1, h2) =

2∏

i=1

1

Γ(ν)2ν−1

(
2
√
ν |hi|
θi

)ν
Kν

(
2
√
ν |hi|
θi

)
(3.4.3)

with θ1 = 1/
√

8 and θ2 = 1/
√

15, where Kν(·) is the modified Bessel function

of order ν (see Section 2.3). Recall that the “smoothness” of a given draw y(x) is

determined by the smoothness of the correlation function of the Gaussian stochastic

process. Fifty of the draws came from the process with ν = 5, 50 came from the

process with ν = 10, and 50 came from the process with ν = 50, giving a total of

150 surfaces. The ν = 50 correlation function effectively corresponds to the product

exponential correlation function

R(h1, h2) = e−θ1×|h1 |2 × e−θ2×|h2|2 (3.4.4)

with θ1 = 8 and θ2 = 15. The smoothness of the surfaces drawn increased with ν.

Figure 3.5 displays two of the true test surfaces drawn using (3.4.2).

The output for each surface was evaluated for each of the 6 (= 3 × 2) design ×
sample size combinations. One design we used selected the {xi} to be a maximin

3.5 BLUPs and Empirical BLUPs 77

distance LHD on [0, 1]2 (see page ??). The second design took the {xi} to be D-

optimal (Section 5.1) with respect to the cubic model

β0 + β1 x1 + β2 x2 + β3x1x2 + β4 x2
1 + β5x2

2

+ β6x2
1 x2 + β7x1x2

2 + β8 x3
1 + β9x3

2. (3.4.5)

With 10 coefficients, we selected n = 11 so that the D-optimal design would have 1

degree of freedom to estimate error. The third design chose the {xi} to be a Sobol´

sequence of length 11 or 16 (Subsection ??).

The first predictor considered in this study was the ordinary least squares re-

gression predictor based on the cubic model (3.4.5). The remaining six predictors

were EBLUPs of the form (3.3.9) that were constructed using the MLE, REML, and

XV covariance parameter estimation methods with either the power exponential or

Matérn parametric correlation families.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

98

98.5

99

99.5

100

100.5

101

101.5

102

102.5

x
1

x
2

y
(x

1
,

x
2
)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

97

98

99

100

101

102

x
1

x
2

y
(x

1
,

x
2
)

Fig. 3.5 Two of the 150 random y(x1, x2) surfaces drawn from the krigifier defined by the correla-

tion function (3.4.3); the left panel draw used ν = 5 and right panel draw used ν = 50

While formal statistical mechanisms can be used to analyze these data, the pri-

mary conclusions can be seen from the following figures. Figure 3.6 is a comparative

plot of the distributions of the ERMSPEs for the seven predictors conditioned on n

but ignoring the training data design and the stochastic mechanism used to generate

the true surface. Thus each of the box and whisker plots is constructed from 600

points (3 designs × 4 stochastic mechanisms × 50 surfaces/stochastic mechanism).

It is clear that cross-validation EBLUPs are inferior to those that use MLE or REML

to estimate the covariance parameters. The same is true of cubic regression. Also the

78 3 Prediction Methodology

OLS−Cubic

REML−Matern

MLE−PwrExp

XVAL−Matern

REML−PwrExp

MLE−Matern

XVAL−PwrExp

0 1 2 3 4

Sample Size = 11

0 1 2 3 4

Sample Size = 16

Empirical Root Mean Squared Prediction Error

E
m

pi
ric

al
 B

LU
P

Fig. 3.6 Distribution of ERMSPE over 625 equispaced grid of points in [0, 1]2 for the seven pre-

dictors conditioned on sample size (ignoring training data design and stochastic mechanism gener-

ating the true surface). Two large ERMSPE values by cross-validation EBLUPs were omitted from

the plot.

n = 11 ERMSPEs tend to be larger than those for n = 16. In a figure not shown,

when prediction is restricted to the near-cubic surfaces, the cubic regression predic-

tor performs comparably to the kriging predictors. However, when the true y(·) is

not near-cubic, the cubic regression predictor performs substantially worse than the

kriging predictors.

Restricting attention to the four MLE- and REML- EBLUPs, Figures 3.7 and 3.8

separately examine graphically the distribution of the ERMSPE for each n, each

type of design, and each class of true surface. The conclusions are similar in both

figures. First, for near-cubic surfaces, any choice of training design and any choice

of EBLUP is comparable and estimates the surface well. Second, use of the D-

optimal design gives inferior prediction compared with the maximin distance LHD

or the Sobol´ design. Third, outliers with slightly poorer performance occur more

often with the Sobol´ design than with the maximin distance LHD.

Surface-by-surface comparisons of the ERMSPE of these predictors were made

for the MLE-EBLUP versus the REML-EBLUP predictors and for the four differ-

3.5 BLUPs and Empirical BLUPs 79

Fig. 3.7 Distribution of ERMSPE over 625 equispaced grid of points in [0, 1]2 when n = 16

conditioned on training data design and type of true surface for the the MLE- and REML- EBLUPs

based on either the power exponential and the Matérn correlation functions.

ent true surface groups. These plots showed little difference between the predictive

ability of the two methods.

Before stating our primary conclusions, we wish to note several limitations of this

particular empirical study that may effect our recommendations in some settings.

80 3 Prediction Methodology

Fig. 3.8 Distribution of ERMSPE over 625 equispaced grid of points in [0, 1]2 when n = 11

conditioned on training data design and type of true surface for the MLE- and REML- EBLUPs

based on either the power exponential and the Matérn correlation functions.

First, all of the true surfaces are rather smooth, with the roughest corresponding to

the krigifier with ν = 5. Second, the dimension of the input in this study is d = 2, a

rather low value. Third, none of the krigifier surfaces has a nonstationary trend term.

3.5 BLUPs and Empirical BLUPs 81

It would be desirable to enhance the ranges of all three of these factors to broaden

the applicability of our recommendation.

There are several additional caveats that should be kept in mind regarding our

recommendations. This section makes recommendations based on the prediction ac-

curacy of several predictors. Among the other important products of the prediction

process are prediction bounds based on the plug-in estimates of prediction variabil-

ity that will be introduced in Section ??. The accuracy of such prediction intervals

will be addressed in more detail in Section ??. Our assessment of the empirical cov-

erage of the corresponding intervals does not change the basic recommendations

given below. Another issue is that we did not explicitly assess how small an initial

sample size can be used to provide “reasonably” accurate prediction surfaces; for se-

quential designs (in addition to arising in high-dimensional, high-cost codes), such

problems occur in Subsection ?? where the sequential design of a computer experi-

ment is presented to find the global optimum of y(·). Certainly five observations per

dimension appears to be adequate based on this limited study.

Recommendation We recommend use of either the REML-EBLUP or MLE-EBLUP

based on the power exponential correlation family. The Matérn correlation family

produces similar ERMSPEs as the power exponential correlation family but is more

computationally expensive. Maximin distance LHDs produce good predictors with

Sobol´ designs a close second. D-optimal designs should be not be used to generate

training data.

Example 3.8. We illustrate the use of PErK to fit the REML empirical BLUP that

is described earlier in this section. Recall the data introduced in Section 1.2 on the

time for a fire to reach five feet above a fire source located in a room of a given

room height and room area. In addition to room geometry, this output time is also

dependent on the inputs: heat loss fraction, a measure of how well the room retains

heat, and the height of the fire source above the room floor. Figure 3.9 plots each

of the six two-dimensional projections of the 40 input points generated by a Sobol´

design. As noted in Chapter 4, Sobol´ designs provide points that have a greater

range of inter-point distances than do the maximin distance Latin hypercube designs

(see Example ??). This may allow better estimation of correlation parameters if the

predictions are required at a set of points of varying distances from the training data.

Figure 3.10 displays scatterplots of each of the four input variables versus the

time for a fire to reach five feet above the fire source, this output denoted by y(x).

Of these inputs, only room area appears to have a strong relationship with response

time.

We desire to predict y(·) on a regular 320 point grid consisting of 4 × 4 × 4 ×
5 equally spaced points over the ranges of the variables: heat loss fraction, room

height, fire height, and room area, respectively. Our predictor is an EBLUP based

on the Gaussian Stochastic Process with Matérn correlation function

R(h) =

4∏

i=1

1

Γ(ν)2ν−1

(
2
√
ν |hi|
θi

)ν
Kν

(
2
√
ν |hi|
θi

)
(3.4.6)

82 3 Prediction Methodology

with unknown correlation parameter ψ = (θ1, . . . , θ4, ν). Recall that for large ν, the

ith component correlation function of this product converges to the Gaussian corre-

lation

e−(hi/θi)
2

. (3.4.7)

The PErK code used to fit the REML estimates of the correlation parameters and

to predict the output is specified as follows.

PErK job to determine REML estimator, Example 3.8

CorrelationFamily = Matern

CorrelationType = 1

RandomError = No

Tries = 5

LogLikelihoodTolerance = 1.e-5

SimplexTolerance = 1.e-5

RandomNumberSeed = 26841

CorrelationEstimation = REML

CrossValidate

Input stage

Ranges < ranges

X < sobol-40.x

Y < sobol-40.y

XPred < grid-320.x

YTrue < grid-320.y

RegressionModel < reg.constant

Output stage

Summary > reml.summary

RegressionModel > reml.beta

StochasticProcessModel > reml.corpar

Predictions > reml.ypred

The inputs to this PErK run are two files that contain the x and y(x) data; these are

the 40×4 file sobol-40.x and the 40×1 file sobol-40.y, respectively. The output

file reml.summary, below, contains a summary of the quality of the fit including

the root mean squared prediction error

√√√
1

320

320∑

i=1

(
y(xi) − ŷ(xi)

)2
= 0.46891

for the 320 point test grid and a similar root mean squared prediction error for the

cross-validated predictions of the 40 point training data.

reml.summary output file for Example 3.8

3.5 BLUPs and Empirical BLUPs 83

Number of Design Sites = 40

Correlation Family = Matern I

Random Error = No

Stochastic Process Variance = 7386.59136

Restricted Log Likelihood = -4.65190

Number of Restricted Log Likelihood Evaluations = 5594

Condition Number of Cholesky Square Root

of Correlation Matrix = 1252.53494

Cross Validation RMSPE = 0.40972

Cross Validation MAD = 0.74330

Case = 29

Number of Prediction Sites = 320

Prediction RMSPE = 0.46891

Prediction MAD = 1.52242

Case = 260

The 320 predictions and their estimated standard errors under the Gaussian

Stochastic Process model are listed in reml.ypred. Figure 3.11 plots the predicted

versus the true times for the 320 points. The predicted values are close to the true

values throughout the input variable space.

The estimated constant of the process is contained in the reml.beta output file.

reml.beta output file for Example 3.8

The estimates of the linear model parameters are:

Parameter Beta

1 23.58701

The estimated correlation parameters are given in the file reml.corpar.

84 3 Prediction Methodology

reml.corpar output file for Example 3.8

Correlation Family = Matern I

REML estimates of the correlation range parameters are:

Case Range

1 12.34622

2 6.88973

3 9.52963

4 7.08559

The REML of the correlation smoothness parameter is:

1.67681

The REML estimate of ν is 1.68 while the REMLs of the scale parameters θ1, . . . ,

θ4 range from 6.89 to 12.35. �

0.65 0.70 0.75

0.75 0.80 0.85

0.75

0.80

0.85

0.65

0.70

0.75Loss Fraction

1.5 2.0

2.0 2.5

2.0

2.5

1.5

2.0Fire Height

 9 10

10 11

10

11

 9

10Room Height

100 150

200 250

200

250

100

150

Room Area

Fig. 3.9 Scatterplot matrix of the 40 input points used in Example 3.8.

3.5 BLUPs and Empirical BLUPs 85

Heat Loss Fraction

T
im

e
(s

ec
)

to
 R

ea
ch

 5
 ft

 a
bo

ve
 a

 F
ire

 S
ou

rc
e

0.60 0.70 0.80 0.90

30
40

50
60

70

Room Area (sq. ft.)

T
im

e(
se

c)
 t

o
R

ea
ch

 5
 ft

 a
bo

ve
 a

 F
ire

 S
ou

rc
e

100 150 200 250

30
40

50
60

70

Room Height (ft.)

T
im

e
(s

ec
)

to
 R

ea
ch

 5
 ft

 a
bo

ve
 a

 F
ire

 S
ou

rc
e

8 9 10 11 12

30
40

50
60

70

Fire Height (ft.)

T
im

e
(s

ec
)

to
 R

ea
ch

 5
 ft

 a
bo

ve
 a

 F
ire

 S
ou

rc
e

1.0 1.5 2.0 2.5 3.0

30
40

50
60

70

Fig. 3.10 Scatterplots of the time for a fire to reach five feet above a fire source versus each of the

inputs: (1) room height, (2) room area, (3) heat loss fraction, and (4) height of the fire source above

the floor, using the data from Example 3.8.

86 3 Prediction Methodology

30 40 50 60 70

30
40

50
60

70

Predicted Time

T
ru

e
T

im
e

Fig. 3.11 Scatterplot of the true versus predicted times to reach five feet above a fire source for the

equispaced grid of 320 points used in Example 3.8.

3.5 BLUPs and Empirical BLUPs 87

3.5 Prediction for Multivariate Output Simulators

88 3 Prediction Methodology

s

3.6 Chapter Notes

3.6.1 Proof That (3.2.21) Is a BLUP (page 66)

The predictor Ŷ0 is linear because

Ŷ0 = f⊤0 (F⊤F)−1F⊤Yn = a⊤⋆Yn . (3.6.1)

Furthermore Ŷ0 is unbiased because

F⊤a⋆ = F⊤F(F⊤F)−1 f 0 = f 0.

To see that (3.6.1) minimizes the MSPE pick any a for which a⊤Yn is unbiased, i.e.,

any a for which F⊤a = f 0, and fix any (β, σ2
ǫ). Then the MSPE for this moment

model is

E

{(
a⊤Yn − Y0

)2
}
= E

{(
a⊤(Fβ + ǫn) − f⊤0 β − ǫ0

)2
}

= E



β⊤(F⊤a − f 0) +

n∑

i=1

aiǫi − ǫ0


2

= E




n∑

i=1

aiǫi − ǫ0


2 (3.6.2)

= σ2
ǫ


n∑

i=1

a2
i + 1

 = σ2
ǫ

(
a⊤a + 1

)
. (3.6.3)

Equality holds in (3.6.2) because a satisfies the unbiasedness condition (3.2.20)

and equality holds in (3.6.3) because the measurement errors are uncorrelated. This

shows that the BLUP corresponds to that choice of a that minimizes a⊤a subject to

F⊤a = f 0. But for any such a,

a⊤a = (a − a⋆ + a⋆)⊤(a − a⋆ + a⋆)

= (a − a⋆)⊤ (a − a⋆) + a⊤⋆a⋆

+ 2 (a − a⋆)⊤ a⋆

= (a − a⋆)⊤ (a − a⋆) + a⊤⋆a⋆ (3.6.4)

≥ a⊤⋆a⋆, (3.6.5)

where (3.6.1) defines a⋆. Equality holds in (3.6.4) because the cross product is zero

when F⊤a = f 0:

3.5 Chapter Notes 89

a − a⋆ = a − F
(
F⊤F

)−1
f 0 = a − F

(
F⊤F

)−1
F⊤a

=

(
I − F

(
F⊤F

)−1
F⊤

)
a

which implies

(a − a⋆)⊤ a⋆ = a⊤
(
I − F

(
F⊤F

)−1
F⊤

)
×

(
F

(
F⊤F

)−1
f 0

)

= a⊤
(
a⋆ − F

(
F⊤F

)−1 (
F⊤F

) (
F⊤F

)−1
f 0

)

= 0 .

Furthermore this argument shows that the BLUP is unique because equality holds

in (3.6.5) if and only if a = a⋆. �

3.6.2 Proof That (3.3.4) Is a BLUP (page 68)

This proof is more complicated than its measurement error counterpart studied in

Example 3.6 of Section 3.2. However, part of the argument used in Example 3.6 can

be retained here. The class of LUPs of Y(x0) with respect to (3.3.3) depends only on

the first moment of (Y0,Y
n) and hence is the same as for Example 3.6. The predictor

Ŷ(x0) = a0 + a⊤Yn is unbiased for Y(x0) provided

a0 = 0 and F⊤a = f 0. (3.6.6)

Now fix any LUP of Y(x0), say a⊤Yn. Let Zn = (Z(x1), . . . , Z(xn))⊤ and

Z0 = Z(x0) be the corresponding stochastic process parts of Yn and Y(x0) in (3.3.1),

respectively. For fixed β and σ2
Z
, the MSPE of a⊤Yn is

E{(a⊤Yn − Y0)2} = E{(a⊤(Fβ + Zn) − (f⊤0 β + Z0))2}
= E{((a⊤F − f⊤0)β + a⊤Zn − Z0)2}
= E{a⊤Zn(Zn)⊤a

− 2a⊤ZnZ0 + Z2
0} (3.6.7)

= σ2
Z
a⊤Ra − 2σ2

Z
a⊤r0 + σ

2
Z

= σ2
Z

(
a⊤Ra − 2a⊤r0 + 1

)
, (3.6.8)

where (3.6.7) follows from (3.6.6). Thus the BLUP chooses a to minimize

a⊤Ra − 2a⊤r0 (3.6.9)

subject to

F⊤a = f 0 . (3.6.10)

90 3 Prediction Methodology

The method of Lagrange multipliers can be used to minimize the quadratic objec-

tive function (3.6.9) subject to linear constraints (3.6.10). We find (a, λ) ∈ IRn+p to

minimize

a⊤Ra − 2a⊤r0 + 2λ⊤(F⊤a − f 0) . (3.6.11)

Calculating the gradient of (3.6.11) with respect to (a, λ) and setting it equal to the

zero vector gives the system of equations

F⊤a − f 0 = 0

Ra − r0 + Fλ = 0

or (
0 F⊤

F R

) (
λ

a

)
=

(
f 0

r0

)
,

which implies

(
λ

a

)
=

(
0 F⊤

F R

)−1 (
f 0

r0

)

=

(
−Q QF⊤R−1

R−1 FQ R−1 − R−1FQF⊤R−1

)
×

(
f 0

r0

)
,

where Q = (F⊤R−1F)−1. After a small amount of algebra, the a solution gives

(3.3.4) as the BLUP for the family (3.3.3). �

3.6.3 Implementation Issues

The calculation of either the MLE or the REML of the correlation parameters re-

quires the repeated evaluation of the determinant and inverse of the n × n matrix

R. The Cholesky decomposition provides the most numerically stable method of

calculating these quantities (Harville (1997)). Nevertheless, the repeated evaluation

of these quantities is the most time consuming aspect of algorithms that sequen-

tially add data. As an example, Williams et al (2000) report the times to maximize

the REML likelihood which is required during the execution of their global opti-

mization algorithm. In a six-dimensional input case, they fit the Matérn correlation

function with a single shape parameter and separate range parameters for each input

(a seven-dimensional ψ correlation parameter). When 50 training points were used,

their optimization of the ψ likelihood (3.3.16) required 2,140 seconds of Sun Ultra 5

CPU time and this optimization required 4,230 seconds of CPU time for 82 training

points. Fitting the power exponential model was faster with 1,105 seconds of CPU

time required for the 50 point case and 3,100 seconds of CPU time for the 82 point

case. Indeed, applications that require a sequence of correlation parameter estimates

3.5 Chapter Notes 91

for increasing n often re-estimate these parameters only periodically, for example,

when every fifth point is added to the design. A more rational plan is to re-estimate

the correlation parameters more often for small n and more frequently for large n.

For sufficiently large n, these estimators become intractable to calculate.

The dimension of the optimization problems required to find MLEs and REMLs

can be large. For example, in a product exponential model with 20 input variables,

each having unknown scale and power parameters, ψ is 40-dimensional. Such high-

dimensional likelihood surfaces tend to have many local maxima, making global

optimization difficult.

A variety of algorithms have been successfully used to determine MLEs and

REMLs of correlation parameters. Among these are the Nelder-Mead simplex algo-

rithm (Nelder and Mead (1965)), branch and bound algorithms (Jones et al (1998)),

and stochastic global optimization algorithms (Rinnooy Kan and Timmer (1984)).

As noted above, the primary feature of a successful algorithm is that it must be ca-

pable of handling many local maxima in order to find a global maximum. There

has been limited head-to-head comparison of the efficiency of these algorithms in

finding optima.

As an example, to address high-dimensional MLE and REML parameter esti-

mation problems, Welch et al (1992) proposed using a dimensionality reduction

scheme to perform a series of presumably simpler optimizations. The idea is to make

tractable the high-dimensional ψ minimization in (3.3.14) or (3.3.16) by constrain-

ing the number of free parameters allowed in the minimization; only “important”

input variables are allowed to possess their own unconstrained correlation param-

eters. They illustrate the method for the Gaussian correlation family (2.4.6) where

ψ = (θ1, . . . , θd).

First, each of the d input variables must be scaled to have the same range. At each

stage of the process, let C denote the indices of the variables having common values

of the correlation parameters for that step and let C \ { j} denote the set difference of

C and { j}. In the following meta-code, S0 is an initialization step while S1 and S2

are induction steps.

S0 Set C = {1, 2, . . . , d}, i.e., ψ1 = · · · = ψd = ψ. Maximize (3.3.14) or (3.3.16) as a

function of ψ and denote the resulting log likelihood by ℓ0.

S1 For each j ∈ C, maximize (3.3.14) or (3.3.16) under the constraint that variables

ψh with h ∈ C \ { j} have a common value and ψ j varies freely. Denote the result

by ℓ j.

S2 Let jmax denote the variable producing the largest increase in ℓ j − ℓ0 for j ∈ C.

S3 If ℓ jmax − ℓ0 represents a “significant” increase in the log likelihood as judged by

a stopping criterion, then update C to be C \ jmax, ℓ0 to be ℓ jmax , and fix ψ jmax at its

value estimated in S1. Continue the next iteration at Step S1. Otherwise, stop the

algorithm and estimate the correlation parameters to be the values produced by

the previous iteration.

Variations are, of course, possible in this alg. For example, two-dimensional op-

timizations are used in every cycle of S1 because all ψ jmax estimated in previous

cycles are fixed in subsequent ones. Instead, S1 could allow the ψ j values previ-

92 3 Prediction Methodology

ously estimated to vary freely along with the next individual ψ j to be estimated. Of

course, the number of variables in the maximization would increase at each step of

the algorithm.

3.6.4 Alternate Predictors

This chapter has focused on the use of empirical best linear unbiased prediction,

also known as empirical kriging prediction in the geostatistics literature. Empirical

kriging methodology becomes numerically unstable when the size of the training

sample, n, is large because the predictor (3.3.9) requires the inversion of an n × n

matrix, which can be near-singular for certain correlation functions and choices of

inputs x. While numerous authors have written code to make empirical kriging more

efficient (see An and Owen (2001) for some analysis of the computational burden),

there is a point beyond which empirical kriging cannot be used. Hence several other

approaches have been investigated in the literature that are computationally simpler

than empirical kriging. We mention two of these methods.

One method of prediction that leads to computationally simpler predictors is to

use the Gaussian random field model with a “Markov random field” model for the

dependence structure. The special structure of the resulting correlation matrix al-

lows for its analytic inversion and the usual empirical kriging predictor (3.3.9) has

a simple form. See Cressie (1993), page 364, for a summary of the properties of

MRF-based predictors and for additional references.

An and Owen (2001) described a predictor that they dubbed “quasi-regression.”

Their method exploits the use of an orthogonal basis function system to relate the in-

puts to the computer output. These methods are extremely computationally efficient

and a wide variety of basis systems can be used.

Chapter 4

Bayesian Prediction of Computer Simulation

Output

4.1 Predictive Distributions

this version is used only as a place holder

4.1.1 Introduction

A predictive distribution for the random variable Y0 is meant to capture all the in-

formation about Y0 that is contained in Yn = (Y1, . . . , Yn)⊤. Of course, knowing

Yn does not completely specify Y0 but Yn does provide a probability distribution of

more likely and less likely values for Y0 that is called the predictive distribution of

Y0 given Yn. This section derives predictive distributions useful for computer output

based on two hierarchical models for [Y0,Y
n]. Section 3.5 considers prediction in

the case of multiple response models, as described in Section 2.3.

Formally, the predictive distribution of Y0 based on Yn is defined to be the con-

ditional distribution of Y0 given Yn, which is denoted by [Y0 | Yn]. The mean of

the [Y0 | Yn] distribution arose earlier, in Equation (3.3.4) of Section 3.2, where we

showed that E{Y0 | Yn} is the best MSPE predictor of Y0.

This section derives predictive distributions for the output of computer experi-

ments under two hierarchical models for [Y0,Y
n]. In the computer experiment ap-

plication, Y0 = Y(x0) and Yn is training data (Y(x1), . . . , Y(xn)). As one application

of the predictive distribution, we place prediction bounds on the best MSPE predic-

tor Ŷ(x0) = E{Y0 |Yn}.

93

94 4 Fully Bayesian Emulators

Both families of hierarchical models have two stages with the first-stage for Y(·)

based on the regression plus stationary Gaussian process model introduced in Chap-

ter 2. This leads to the first-stage conditional distribution

(
Y0

Yn

) ∣∣∣∣∣∣ parameters ∼ N1+n

[(
f⊤0
F

)
β , σ2

Z

(
1 r⊤

0

r0 R

)]
(4.1.1)

for x ∈ X ⊂ IRd. Here f 0 = f (x0) is a known p × 1 vector of regression functions

for Y0; F = (f j(xi)) is a known n × p matrix of regression functions for the training

data; β is an unknown p × 1 vector of regression coefficients; R = (R(xi − x j)) is a

known n× n matrix of the correlations among the training data Yn; r0 = (R(xi − x0))

is a known n × 1 vector of the correlations of Y0 with Yn.

We emphasize that the models discussed in Subsections 4.1.2 and 4.1.3 assume

that the correlation structure is known, in this case R and r0 are known. The first

model assumes that β is unknown and σ2
Z

is known so that β is the conditioning

parameter in (4.1.1) while the second model assumes that (β, σ2
Z
) is unknown so that

(β, σ2
Z
) is the conditioning parameter. The predictive distributions corresponding to

these two models are stated in Theorems 4.1 and 4.2. This section will focus on the

interpretation and application of these two theorems. Sketches of their proofs will

be deferred until Section ??.

The assumption of known correlation structure is dropped in Subsection 4.1.4.

There we consider the frequently occurring case that the correlation function is para-

metric with a form that is known, up to a vector of (unknown) parameters.

4.1.2 Predictive Distributions When σ2
Z
, R, and r0 Are Known

The following theorem specifies the predictive distribution of Y0 for two different

choices of second-stage priors for β. The first, a normal prior, can be regarded as

an informative choice while the second can be thought of as non-informative. The

non-informative prior is formally obtained by letting the variance τ2 → ∞ in the

normal one.

Theorem 4.1. Suppose (Y0,Y
n) follows a two-stage model with known σ2

Z
in which

[(Y0,Y
n) |β] ∼ N1+n

[(
f⊤0
F

)
β , σ2

Z

(
1 r⊤

0

r0 R

)]
.

(a) If

β ∼ Np

[
b0, τ

2V0

]
, (4.1.2)

where b0,V0, and τ2 are known, then Y0 has the predictive distribution

[Y0 | Yn = yn] ∼ N1

[
µ0|n, σ

2
0|n

]
, (4.1.3)

where

4.1 Introduction 95

µ0|n = µ0|n(x0) = f⊤0 µβ|n + r⊤0 R−1
(
yn − Fµβ|n

)
, (4.1.4)

for

µβ|n =


F⊤R−1F

σ2
Z

+
V−1

0

τ2


−1 

F⊤R−1yn

σ2
Z

+
V−1

0 b0

τ2

 , (4.1.5)

and

σ2
0|n = σ

2
0|n(x0) = σ2

Z

1 − (f⊤0 , r⊤0)

−
σ2

Z

τ2 V−1
0 F⊤

F R


−1 (

f 0

r0

) . (4.1.6)

(b) If

[β] ∼ 1 (4.1.7)

on IRp, then Y0 has the predictive distribution

[Y0 | Yn = yn] ∼ N1

[
µ0|n, σ

2
0|n

]
, (4.1.8)

where µ0|n = µ0|n(x0) and σ2
0|n = σ2

0|n(x0) are given by (4.1.4) and (4.1.6), respec-

tively, with the substitution β̂ =
(
F⊤R−1F

)−1
F⊤R−1 yn for µβ|n in (4.1.4) and the

p × p zero matrix for −σ
2
Z

τ2 V−1
0 in (4.1.6).

There are several interesting features of (a) and (b) that aid in their interpretation.

First, there is a “continuity” in the priors and posteriors as τ2 → ∞. Concerning the

priors, we had earlier observed that the non-informative prior (4.1.7) is the limit of

the normal prior (4.1.2) as τ2 → ∞. On the posterior side and paralleling this prior

convergence, it can be calculated that the posterior mean µ0|n(x0) and the posterior

variance σ2
0|n(x0) in (4.1.8) for the non-informative prior are the limits, as τ2 → ∞

of posterior mean and variance for the informative normal prior, which are (4.1.4)

and (4.1.6), respectively. A second interesting feature is that while the prior (4.1.7)

is intuitively non-informative, it is not a proper distribution. Nevertheless, the cor-

responding predictive distribution is proper. Indeed, we saw in (3.2.12) that β̂ is the

posterior mean of β given the data Yn = yn for this two-stage model (and is the

generalized least squares estimator of β from a frequentist viewpoint). Lastly, recall

that in Subsection 3.3.2 we used a conditioning argument to derive the formula

f⊤0 β̂ + r⊤0 R−1
(
yn − Fβ̂

)

in (4.1.8) as the predictive mean for the non-informative prior. This same type of

conditioning can be applied to derive posterior mean (4.1.4)–(4.1.5) for the normal

prior (4.1.2) for β.

To understand the implications of Theorem 4.1, we examine some properties

of the mean and variance of the predictive distribution (4.1.3). Both µ0|n(x0) and

σ2
0|n(x0) depend on x0 only through the regression functions f 0 = f (x0) and the

correlation vector r0 = r(x0). Focusing first on µ0|n(x0), a little algebra shows that

µ0|n(x0) is linear in Yn and, with additional calculation, that it is an unbiased predic-

tor of Y(x0), i.e., µ0|n(x0) is a linear unbiased predictor of Y(x0).

96 4 Fully Bayesian Emulators

Second, the continuity and other smoothness properties of µ0|n(x0) are inherited

from those of the correlation function R(·) and the regressors { f j(·)}pj=1
because

µ0|n(x0) =

p∑

j=1

f j(x0)µβ|n, j +
n∑

i=1

diR(x0 − xi),

where µβ|n, j is the jth element of µβ|n. Previously, Subsection ?? had observed a

parallel behavior for the BLUP (3.3.4), which is exactly the predictive mean µ0|n(x0)

in part (b) of Theorem 4.1.

Third, µ0|n(x0) depends on the parametersσ2
Z

and τ2 only through their ratio. This

is because

µβ|n =


F⊤R−1F

σ2
Z

+
V−1

0

τ2


−1 

FR−1yn

σ2
Z

+
V−1

0 b0

τ2



= (σ2
Z
)

(
F⊤R−1F +

σ2
Z

τ2
V−1

0

)−1

× (σ2
Z
)−1

(
F⊤R−1yn +

σ2
Z

τ2
V−1

0 b0

)

=

(
F⊤R−1F +

σ2
Z

τ2
V−1

0

)−1 (
F⊤R−1yn +

σ2
Z

τ2
V−1

0 b0

)
.

.

Lastly, the mean predictors µ0|n(x0) in Theorem 4.1 interpolate the training data.

This is true because when x0 = xi for some i ∈ {1, . . . , n}, f 0 = f (xi), and r⊤
0

R−1 =

e⊤
i

, the ith unit vector. Thus

µ0|n(xi) = f⊤(xi)µβ|n + r⊤0 R−1(Yn − Fµβ|n)

= f⊤(xi)µβ|n + e⊤i (Yn − Fµβ|n)

= f⊤(xi)µβ|n + (Yi − f⊤(xi)µβ|n)

= Yi .

Example 4.1. This example illustrates the effect of various choices of the prior [β]

on the mean of the predictive distribution which is stated in Theorem 4.1. We use

the same true function

y(x) = e−1.4x cos(7πx/2) , 0 < x < 1,

and n = 7 point training data as in Examples 3.3 and 3.7. The predictive distribution

of Y(x0) is based on the two-stage model whose first stage is the stationary stochastic

process

Y(x) | β0 = β0 + Z(x) , 0 < x < 1,

where β0 ∈ IR and R(h) = exp{−136.1 × h2}.

4.1 Introduction 97

x

y(
x)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

•

•

•

•

•

•

• Tau = 0
Tau = 0.1
Tau = 0.5
Tau = Infinity (BLUP)

Fig. 4.1 The predictor µ0|n = µβ0 |n + r⊤
0

R−1(yn − 1nµβ0 |n) in (4.1.9) and (4.1.10) with b0 = 5,

σZ = .41, and four choices of τ2.

Suppose we take β0 ∼ N(b0, τ
2 × v2

0
) in part (a) of Theorem 4.1 and v0 = 1 to

guarantee identifiability of the prior variance. Both b0 and τ2 are assumed known.

The mean of the posterior, Equation (4.1.4), is

µ0|n = µβ0 |n + r⊤0 R−1
(
yn − 1nµβ0 |n

)
, (4.1.9)

where µβ0 |n is the posterior mean of β0 given Yn which is

µβ0 |n = µβ0 |n(b0, τ
2) =

(1⊤n R−1yn + b0σ
2
Z
/τ2)

(1⊤n R−11n + σ
2
Z/τ

2)

= ωb0 + (1 − ω)(1⊤n R−11⊤n)−1(1⊤n R−1yn)

= ωb0 + (1 − ω)β̂0, (4.1.10)

where ω = σ2
Z
/[τ21⊤n R−11n + σ

2
Z
] ∈ (0, 1). In words, (4.1.10) can be interpreted as

saying that the posterior mean of β0 given Yn is a convex combination of the MLE

of β0 and its prior mean, which are β̂0, the generalized least squares estimator of

β0 and b0, respectively. The behavior of the weight ω provides additional intuition

about two extreme cases of µβ0 |n. When the prior certainty in b0 increases in such a

way that τ2 → 0 for fixed process variance σ2
Z
, then ω→ 1 and µ0|n → b0, meaning

that the predictor uses only the prior and ignores the data, which is reasonable for

perfect prior information. Similarly, when the prior certainty in b0 decreases in such

98 4 Fully Bayesian Emulators

a way that τ2 → ∞ for fixed process variance σ2
Z
, then ω → 0 and µ0|n → β̂0 so

the predictor uses only the data and ignores the prior, which is, again, intuitively

reasonable when there is no prior information.

Figure 4.1 shows the effect of changing the prior on µ0|n(x0); remember that

µ0|n(x0) depends not only on µβ0 |n but also on the correction term r⊤
0

R−1(yn−1nµβ0 |n).

The four predictors correspond to b0 = 5, σZ = .41, and four τ2 values, with a fixed

power exponential correlation function. Smaller τ2 values produce predictors that

have greater excursions from the data than do predictors having greater τ2 values.

In this case, the predictors having smaller τ2 produce larger excursions from the

true curve than does the BLUP (3.3.4) (which equals µ0|n(x0) with τ2 = ∞). This

prior mean of β0 was purposely taken to be the “large” value of b0 = 5.0 which is

not near the data to illustrate the effect of τ2. Smaller τ2 values correspond to being

more certain about the prior and thus, the predictor pulls away from the data except

when the training data pull it back. �

Turning attention to the variance of the predictive distribution, σ2
0|n(x0), first ob-

serve that this quantity can be interpreted as the (unconditional) mean squared pre-

diction error of µ0|n(x0) because

MSPE(µ0|n(x0)) = E
{(

Y(x0) − µ0|n(x0)
)2
}

= E
{
(Y(x0) − E {Y(x0)|Yn})2

}

= E
{
E

{
(Y(x0) − E {Y(x0)|Yn})2 |Yn

}}

= E
{
σ2

0|n(x0)
}

= σ2
0|n(x0).

Thus σ2
0|n(x0) is the usual measure of precision of µ0|n(x0).

The reader should be alert to the fact that σ2
0|n(x0) has a number of equivalent

algebraic forms that are used in different papers and books (see Sacks et al (1989),

Cressie (1993)). Using basic matrix manipulations and starting with (4.1.6), we ob-

tain

4.1 Introduction 99

σ2
0|n = σ

2
Z

1 − (f⊤0 , r⊤0)

−
σ2

Z

τ2 V−1
0 F⊤

F R


−1 (

f 0

r0

)

= σ2
Z

{
1 −

[
− f⊤0 Q−1 f 0 + 2 f⊤0 Q−1F⊤R−1r0

+ r⊤0 {R−1 − R−1 FQ−1F⊤R−1}r0

]}
(4.1.11)

= σ2
Z
{1 − r⊤0 R−1r0 + f⊤0 Q−1 f 0 − 2 f⊤0 Q−1F⊤R−1 r0

+ r⊤0 R−1FQ−1F⊤R−1r0}

= σ2
Z
{1 − r⊤0 R−1r0 + h⊤Q−1 h}, (4.1.12)

where

Q = F⊤R−1F +
σ2

Z

τ2
V−1

0 , (4.1.13)

h = f 0 − F⊤R−1r0, and (4.1.11) follows from Lemma B.3. In particular, expression

(4.1.12)

σ2
0|n = σ

2
Z
{1 − r⊤0 R−1r0 + h⊤(F⊤R−1F)−1h}

is a frequently-used expression for the variance of the BLUP (3.3.4), i.e., for µ0|n(x0)

in Part (b) of Theorem 4.1. (See, for example, (5.3.15) of Cressie (1993).)

Intuitively, the variance of the posterior of Y(x0) given Y(x1), . . . , Y(xn) should be

zero whenever x0 = xi because we know exactly the response at each of the training

data sites xi and there is no measurement error term in our stochastic process model.

To see that this is the case analytically, fix x0 = xi for some 1 ≤ i ≤ n, recall that

r⊤
0

R−1 = e⊤
i

, and observe that f 0 = f (xi). From (4.1.12),

σ2
0|n(xi) = σ

2
Z
{1 − r⊤0 R−1r0 + (f⊤0 − r⊤0 R−1F)Q−1(f 0 − F⊤R−1r0)}

= σ2
Z
{1 − e⊤i r(xi) + (f⊤(xi) − e⊤i F)Q−1(f (xi) − F⊤ei)}

= σ2
Z
{1 − 1 + (f⊤(xi) − f⊤(xi))Q

−1(f (xi) − f (xi))}
= σZ{1 − 1 + 0} = 0

where Q is given in (4.1.13).

Perhaps the most important use of Theorem 4.1 is to provide pointwise predictive

bands about the predictor µ0|n(x0). The bands can be obtained by using the fact that

Y(x0) − µ0|n(x0)

σ2
0|n(x0)

∼ N(0, 1) .

This gives the posterior prediction interval

P{Y(x0) ∈ µ0|n(x0) ± σ0|n(x0)zα/2|Yn} = 1 − α,

100 4 Fully Bayesian Emulators

where zα/2 is the upper α/2 critical point of the standard normal distribution (see

Appendix A). As a special case, if the input x0 is real with limits a < x0 < b,

then µ0|n(x0) ± σ0|n(x0)zα/2 are pointwise 100(1 − α)% prediction bands for Y(x0),

a < x0 < b. Below, we illustrate the prediction band calculation following the

statement of the predictive distribution for our second hierarchical (Y0,Y
n) model in

Theorem 4.2.

4.1.3 Predictive Distributions When R and r0 Are Known

Using the fact that [β, σ2
Z
] = [β |σ2

Z
] × [σ2

Z
], Theorem 4.2 provides the (predic-

tive) distribution of Y(x0) given Yn for four priors corresponding to informative and

non-informative choices for each of the terms [β |σ2
Z
] and [σ2

Z
], i.e., proper and im-

proper distributions, respectively. These four combinations give rise to the simplest

[β, σ2
Z
] priors that are, with adjustments given in Subsection 4.1.4, useful in practi-

cal situations. In all cases, the posterior is a location shifted and scaled univariate

t distribution having degrees of freedom that are enhanced when there is informa-

tive prior information for either β or σ2
Z

(see Appendix B.2 for a definition of the

non-central t distribution, T1(ν, µ, σ)).

The informative conditional [β |σ2
Z
] choice is the multivariate normal distribu-

tion with known mean b0 and known correlation matrix V0; lacking more definitive

information, V0 is often taken to be diagonal, if not simply the identity matrix. This

model makes strong assumptions, for example, it says that, componentwise, β is

equally likely to be less than or greater than b0. The non-informative β prior is the

intuitive choice

π(β) = 1.

Our informative prior for σ2
Z

is the distribution of a constant divided by a Chi-

square random variable, i.e., we model [σ2
Z
] as having the density of the c0/χ

2
ν0

random variable. This density has prior mean and variance

c0

ν0 − 2
, for ν0 > 2 and

2 × c2
0

(ν0 − 2)2(ν0 − 4)
, for ν0 > 4,

which allows one to more easily assign the model parameters. The non-informative

prior used below is “Jeffreys prior”

π(σ2
Z
) =

1

σ2
Z

(see Jeffreys (1961), who gives arguments for this choice). Table 4.1 lists the nota-

tion for each of these four combinations that is used in Theorem 4.2.

Theorem 4.2. Suppose (Y0,Y
n) follows a two-stage model in which the conditional

distribution [(Y0,Y
n) | (β, σ2

Z
)] is given by (4.1) and [(β, σ2

Z
)] has one of the priors

corresponding to the four products (1)–(4) stated in Table 4.1. Then

4.1 Introduction 101

[σ2
Z
][

β |σ2
Z

]
c0/χ

2
ν0

1/σ2
Z

N(b0, σ
2
Z
V0) (1) (2)

1 (3) (4)

Table 4.1 Labels of four [β, σ2
Z
] priors corresponding to informative and non-informative choices

for each of [β | σ2
Z
] and [σ2

Z
].

[Y0 | Yn] ∼ T1

(
νi, µi, σ

2
i

)
, (4.1.14)

where

νi =



n + ν0 , i = (1)

n, i = (2)

n − p + ν0, i = (3)

n − p, i = (4),

µi = µi(x0) =


f⊤0 µβ|n + r⊤

0
R−1(yn − Fµβ|n), i = (1) or (2)

f⊤0 β̂ + r⊤
0

R−1(yn − Fβ̂), i = (3) or (4)

with µβ|n =
(
F⊤R−1F + V−1

0

)−1 (
F⊤R−1yn + V−1

0 b0

)
,

β̂ =
(
F⊤R−1 F

)−1 (
F⊤R−1yn

)
, and

σ2
i = σ

2
i (x0) =

Q2
i

νi

1 − (f⊤0 , r⊤0)

[
Vi F⊤

F R

]−1 (
f 0

r0

) (4.1.15)

for i = (1), . . . , (4), where

Vi =


−V−1

0 , i = (1) or (2)

0, i = (3) or (4)

and

Q2
i =



c0 + Q2
2
, i = (1)

Q2
4
+

(
b0 − β̂

)⊤ (
V0 + [F⊤R−1F]−1

)−1 (
b0 − β̂

)
, i = (2)

c0 + Q2
4
, i = (3)

yn⊤
[
R−1 − R−1F

(
F⊤R−1F

)−1
F⊤R−1

]
yn, i = (4).

The formulas above for the degrees of freedom, location shift, and scale factor

in the predictive t distribution all have very intuitive interpretations. The base value

for the degrees of freedom νi is n − p, which is augmented by p additional degrees

of freedom when the prior for β is informative (cases (1) and (2)), and ν0 additional

degrees of freedom when the prior for σ2
Z

is informative (cases (1) and (3)). For ex-

ample, the degrees of freedom for case (4), with both components non-informative,

is n − p with no additions; the degrees of freedom for (1), with both components

102 4 Fully Bayesian Emulators

informative, is n + ν0 = (n − p) + p + ν0, corresponding to two incremental prior

sources.

The location shift µi is precisely the same centering value as in Theorem 4.1 for

the case of knownσ2
Z
, either (4.1.4) or (4.1.8), depending on whether the informative

or non-informative choice of prior is made for [β | σ2
Z
], respectively. In particular,

the non-informative prior for β gives the BLUP (3.3.4).

The scale factor σ2
i
(x0) in (4.1.15) is an estimate of the scale factor σ2

0|n(x0) in

(4.1.6) of Theorem 4.1. The term in braces multiplying σ2
Z

in (4.1.6) is the same

as the term in braces in (4.1.15) after observing that τ2 = σ2
Z

in Table 4.1. The

remaining term in (4.1.15), Q2
i
/νi, is an estimate of σ2

Z
in (4.1.6). The quadratic

form, Q2
i
, pools information about σ2

Z
from the conditional distribution of Yn given

σ2
Z

with information from the prior of σ2
Z

(when the latter is available). The scale

factor σ2
i
(x0) is zero when x0 is any of the training data points.

Theorem 4.2 is used to place pointwise prediction bands about y(x0) by using the

fact that, given Yn,
Y(x0) − µi(x0)

σi(x0)
∼ T1(νi, 0, 1) .

This gives

P{Y(x0) ∈ µi(x0) ± σi(x0)tα/2νi
|Yn} = 1 − α, (4.1.16)

where t
α/2
ν is the upper α/2 critical point of the Tν distribution (see Appendix A).

When x0 is real, µi(x0) ± σi(x0) t
α/2
νi

for a < x0 < b are pointwise 100(1 − α)%

prediction bands for Y(x0) at each a < x0 < b.

Example 4.1. (Continued) Figure 4.2 plots the prediction bands corresponding to

the BLUP when the predictive distribution is specified by the non-informative prior

[β, σ2
Z
] ∝ 1/σ2

Z
in Theorem 4.2. Notice that these bands have zero width at each

of the true data points, as noted earlier. Prediction bands for any informative prior

specification also have zero width at each of the true data points. �

4.1.4 Prediction Distributions When Correlation Parameters Are

Unknown

Subsections 4.1.2 and 4.1.3 assumed that the correlations among the observations

are known, i.e., R and r0 are known. Now we assume that y(·) has a hierarchical

Gaussian random field prior with parametric correlation function R(· |ψ) having un-

known vector of parameters ψ (as introduced in Subsection 2.4.6 and previously

considered in Subsection 3.3.2 for predictors). To facilitate the discussion below,

suppose that the mean and variance of the normal predictive distribution in (4.1.3)

and (4.1.8) are denoted by µ0|n(x0) = µ0|n(x0|ψ) and σ2
0|n(x0) = σ2

0|n(x0|ψ), where ψ

was known in these earlier sections. Similarly, recall that the location and scale pa-

rameters of the predictive t distributions in (4.1.14) are denoted by µi(x0) = µi(x0|ψ)

and σ2
i
(x0) = σ2

i
(x0|ψ), for i ∈ {(1), (2), (3), (4)}.

4.1 Introduction 103

x

y(
x)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

•

•

•

•

•

•

•

BLUP
Prediction Interval

Fig. 4.2 The BLUP and corresponding pointwise 95% prediction interval limits for y(x) based on

the non-informative prior of Theorem 4.2.

We consider two issues. The first is the assessment of the standard error of the

plug-in predictor µ0|n(x0|ψ̂) of Y0(x0) that is derived from µ0|n(x0|ψ) by substituting

ψ̂, which is an estimator of ψ that might be the MLE or REML. This question is

implicitly stated from the frequentist viewpoint. The second issue is Bayesian; we

describe the Bayesian approach to uncertainty in ψ which is to model it by a prior

distribution.

When ψ is known, recall that σ2
0|n(x0|ψ) is the MSPE of µ0|n(x0|ψ). This suggests

estimating the MSPE of µ0|n(x0|ψ̂) by the plug-in MSPE σ2
0|n(x0|ψ̂). The correct

expression for the MSPE of µ0|n(x0|ψ̂) is

MSPE(µ0|n(x0|ψ̂),ψ) = Eψ

{(
µ0|n(x0|ψ̂) − Y(x0)

)2
}
. (4.1.17)

Zimmerman and Cressie (1992) show that when the underlying surface is generated

by a Gaussian random function,

σ2
0|n(x0|ψ̂) ≤ MSPE(µ0|n(x0|ψ̂),ψ) (4.1.18)

under mild conditions so that σ2
0|n(x0|ψ̂) underestimates the true variance of the

plug-in predictor. The amount of the underestimate is most severe when the underly-

ing Gaussian random function has weak correlation. Zimmerman and Cressie (1992)

propose a correction to σ2
0|n(x0|ψ̂) which provides a more nearly unbiased estimator

104 4 Fully Bayesian Emulators

of MSPE(µ0|n(x0|ψ̂),ψ). Nevertheless, σ2
0|n(x0|ψ̂) continues to be used for assessing

the MSPE of µ0|n(x0|ψ̂) because the amount by which it underestimates (4.1.17) has

been shown to be asymptotically negligible for several models (for general linear

models by Prasad and Rao (1990) and for time series models by Fuller and Hasza

(1981)), and because of the lack of a compelling alternative that has demonstrably

better small-sample properties.

An alternative viewpoint that accounts for uncertainty in ψ is to compute the

mean squared prediction error based on the posterior distribution [Y0|Yn] (termed the

“fully Bayesian approach” by some authors). We sketch how this is accomplished,

at least in principle.

Assume that, in addition to β and σ2
Z
, knowledge about ψ is summarized in a 2nd

stage ψ prior distribution. Often it will be reasonable to assume that the location

and scale parameters, β and σ2
Z
, respectively, are independent of the correlation

information so that the prior for the ensemble [β, σ2
Z
,ψ] satisfies

[β, σ2
Z
,ψ] = [β, σ2

Z
][ψ].

For example, the non-informative prior of Theorem 4.2

[β, σ2
Z
] =

1

σ2
Z

leads to the joint

[β, σ2
Z
,ψ] =

1

σ2
Z

[ψ].

In this case it is useful to regard the t posterior distributions that were stated in

Theorem 4.2 as conditional on ψ and indicated by the notation [Y0|Yn,ψ].

The required posterior distribution can be derived from

[
Y(x0)|Yn] =

∫ [
Y(x0),ψ|Yn] dψ

=

∫ [
Y(x0)|Yn,ψ

] [
ψ|Yn] dψ (4.1.19)

(see however the warning on page 74). The integration (4.1.19) can be prohibitive.

For example, using the power exponential family with input-variable-specific scale

and power parameters, the dimension of ψ is 2× (number of inputs); ψ would be

of dimension 12 for a six-dimensional input. Often, the posterior [ψ|Yn] can be

obtained from
[
ψ|Yn] =

∫ [
β, σ2

Z
,ψ|Yn

]
dβ dσ2

Z
, (4.1.20)

where the integrand in (4.1.20) is determined from

[
β, σ2

Z
,ψ|Yn

]
∝

[
Yn|β, σ2

Z
,ψ

] [
β, σ2

Z
,ψ

]
.

4.1 Introduction 105

Equation (4.1.20) involves an integration of dimension equal to 1+ (the number of

regressors), which is ordinarily less complicated than the integration (4.1.19) and

can be carried out in closed form for “simple” priors.

In sum, one must both derive [ψ|Yn] and carry out the typically high dimensional

integration (4.1.19) in order to compute the required posterior distribution. Once the

posterior is available, the Bayesian alternatives to µ0|n(x0|ψ̂) and σ2
0|n(x0|ψ̂) are

E {Y(x0)|Yn}

and

Var {Y(x0)|Yn} .

Both the predictor and the associated assessment of accuracy account for uncertainty

in ψ.

Handcock and Stein (1993) carried out the integrations in (4.1.19) for a spe-

cific two-input example using several regression models and isotropic correlation

functions (power exponential and Matérn). As expected, they reported that for most

cases that were studied, the Bayesian predictor and its standard errors gave wider

confidence bands for the Y(x0) than the plug-in predictors µ0|n(x0|ψ̂) and σ2
0|n(x0|ψ̂).

The plug-in predictor had particularly poor performance relative to the Bayes pre-

dictor when ψ̂ was determined by an eye-fit to the variogram associated with the

correlation function.

We assess the magnitude of the underestimate of the plug-in MSPE estimator,

which is given on the left-hand side of (4.1.18), by calculating the achieved cov-

erage of the pointwise prediction intervals (4.1.16) having a given nominal level.

The simulation results below consider only the four top predictors from Section 3.3;

these top performing predictors were the EBLUPs based on the power exponential

and Matérn correlation functions using either REML or MLE to estimate the un-

known correlation parameters. In addition, only training data corresponding to the

LHD and Sobol´ designs were used because the D-optimal design (assuming the cu-

bic model) tended to produce more biased predictions than the predictions based on

training data using either the LHD or Sobol´ designs. For each of the 200 randomly

selected surfaces on [0, 1]2 that were described in the empirical study of Section 3.3,

we computed the observed proportion of the 625 x0 points on [0, 1]2 that were cov-

ered by the prediction interval (4.1.16) using i = (4) (so that νi = n − 1). This ob-

served proportion was calculated for nominal 80%, 90%, 95%, and 99% prediction

intervals. Figure 4.3 shows a trellis plot of a typical set of achieved coverages when

n = 16, and the nominal coverage was 90%. Each box and whisker plot is based on

the achieved coverages of the 50 randomly drawn surfaces from that combination of

predictor, design, and surface.

The conclusions are as follows.

• Prediction intervals based on LHDs are slightly preferable to those based on

Sobol´ designs, particularly for more irregular surfaces, i.e., surfaces with many

local maxima and minima.

106 4 Fully Bayesian Emulators

REML−Matern

MLE−Matern

REML−PwrExp

MLE−PwrExp

0.2 0.4 0.6 0.8 1.0

Near−Cubic
Sobol

Krig w/ Nu=5
Sobol

0.2 0.4 0.6 0.8 1.0

Krig w/ Nu=10
Sobol

Krig w/ Nu=50
Sobol

REML−Matern

MLE−Matern

REML−PwrExp

MLE−PwrExp

Near−Cubic
LHD

0.2 0.4 0.6 0.8 1.0

Krig w/ Nu=5
LHD

Krig w/ Nu=10
LHD

0.2 0.4 0.6 0.8 1.0

Krig w/ Nu=50
LHD

Achieved Coverage

F
it

T
yp

e

Fig. 4.3 Box and whisker plots of the fifty proportions of the 625 equispaced grid of points in

[0, 1]2 that were covered by 90% nominal prediction intervals (4.1.16) classified by predictor, by

experimental design, and type of surface.

• All four EBLUPs produced nearly equivalent coverages, for each combination of

the experimental design and source of random surface.

• For krigifier surfaces, the shortfall in the median coverage is 10% to 15%.

Chapter 5

Space-Filling Designs for Computer

Experiments

5.1 Introduction

In this chapter and the next, we discuss how to select inputs at which to compute

the output of a computer experiment to achieve specific goals. The inputs we se-

lect constitute our “experimental design.” We will sometimes refer to the inputs as

“runs.” The region corresponding to the values of the inputs over which we wish

to study or model the response is the experimental region. A point in this region

corresponds to a specific set of values of the inputs. Thus, an experimental design

is a specification of points (runs) in the experimental region at which we wish to

compute the response.

We begin by reviewing some of the basic principles of classical experimental de-

sign and then present an overview of some of the strategies that have been employed

in computer experiments. For details concerning classical design see, for example,

the books by Atkinson and Donev (1992), Box and Draper (1987), Dean and Voss

(1999), Pukelsheim (1993), Silvey (1980), and Wu and Hamada (2000).

5.1.1 Some Basic Principles of Experimental Design

Suppose that we observe a response and wish to study how that response varies as

we change a set of inputs. In physical experiments, there are a number of issues

that make this problematic. First, the response may be affected by factors other than

the inputs we have chosen to study. Unless we can completely control the effects of

these additional factors, repeated observations at the same values of the inputs will

vary as these additional factors vary. The effects of additional factors can either be

unsystematic (random) or systematic. Unsystematic effects are usually referred to

as random error, measurement error, or noise. Systematic effects are often referred

to as bias. There are strategies for dealing with both noise and bias.

107

108 5 Space–Filling Designs

Replication and blocking are two techniques used to estimate and control the

magnitude of random error. Replication (observing the response multiple times at

the same set of inputs) allows one to directly estimate the magnitude and distribu-

tion of random error. Also, the sample means of replicated responses have smaller

variances than the individual responses. Thus, the relation between these means and

the inputs gives a clearer picture of the effects of the inputs because uncertainty

from random error is reduced. In general, the more observations we have, the more

information we have about the relation between the response and the inputs.

Blocking involves sorting experimental material into, or running the experiment

in, relatively homogeneous sets called blocks. The corresponding analysis explores

the relation between the response and the inputs within blocks, and then combines

the results across blocks. Because of the homogeneity within a block, random error

is less within a block than between blocks and the effects of the inputs more eas-

ily seen. There is an enormous body of literature on block designs, including both

statistical and combinatorial issues. General discussions include John (1980), John

(1987), Raghavarao (1971), or Street and Street (1987).

Bias is typically controlled by randomization and by exploring how the response

changes as the inputs change. Randomization is accomplished by using a well-

defined chance mechanism to assign the input values as well as any other factors

that may affect the response and that are under the control of the experimenter, such

as the order of experimentation, to experimental material. Factors assigned at ran-

dom to experimental material will not systematically affect the response. By basing

inferences on changes in the response as the input changes, bias effects “cancel,”

at least on average. For example, if a factor has the same effect on every response,

subtraction (looking at changes or differences) removes the effect.

Replication, blocking, and randomization are basic principles of experimental de-

sign for controlling noise and bias. However, noise and bias are not the only prob-

lems that face experimenters. Another problem occurs when we are interested in

studying the effects of several inputs simultaneously and the inputs themselves are

highly correlated. This sometimes occurs in observational studies. If, for example,

the observed values of two inputs are positively correlated so that they increase to-

gether simultaneously, then it is difficult to distinguish their effects on the response.

Was it the increase in just one or some combination of both that produced the ob-

served change in the response? This problem is sometimes referred to as collinearity.

Orthogonal designs are used to overcome this problem. In an orthogonal design, the

values of the inputs at which the response is observed are uncorrelated. An orthog-

onal design allows one to independently assess the effects of the different inputs.

There is a large body of literature on finding orthogonal designs, generally in the

context of factorial experiments. See, for example, Hedayat et al (1999).

Another problem that can be partly addressed (or at least detected) by careful

choice of an experimental design, occurs when the assumptions we make about the

nature of the relation between the response and the inputs (our statistical model)

are incorrect. For example, suppose we assume that the relationship between the

response and a single input is essentially linear when, in fact, it is highly nonlinear.

Inferences based on the assumption that the relationship is linear will be incorrect.

5.1 Introduction 109

It is important to be able to detect strong nonlinearities and we will need to observe

the response with at least three different values of the input in order to do so. Er-

ror that arises because our assumed model is incorrect is sometimes referred to as

model bias. Diagnostics, such as scatterplots and quantile plots, are used to detect

model bias. The ability to detect model bias is improved by careful choice of an

experimental design, for example, by observing the response at a wide variety of

values of the inputs. We would like to select designs that will enable us to detect

model inadequacies and lead to inferences that are relatively insensitive to model

bias. This usually requires specifying both the model we intend to fit to our data as

well as the form of an alternative model whose bias we wish to guard against; thus

designs for model bias are selected to protect against certain types of bias. Box and

Draper (1987) discuss this issue in more detail.

In addition to general principles, such as replication, blocking, randomization, or-

thogonality, and the ability to detect model bias, there exist very formal approaches

to selecting an experimental design. The underlying principle is to consider the pur-

pose of the experiment and the statistical model for the data and choose the design

accordingly. If we can formulate the purpose of our experiment in terms of opti-

mizing a particular quantity, we can then ask what inputs we should observe the

response at to optimize this quantity. For example, if we are fitting a straight line to

data, we might wish to select our design so as to give us the most precise (minimum

variance) estimate of the slope. This approach to selection of an experimental design

is often referred to as optimal design. See Atkinson and Donev (1992), Pukelsheim

(1993), or Silvey (1980) for more on the theory of optimal design. In the context

of the linear model, popular criteria involve minimizing some function of the co-

variance matrix of the least squares estimates of the parameters. Some common

functions are the determinant of the covariance matrix (the generalized variance),

the trace of the covariance matrix (the average variance), and the average of the

variance of the predicted response over the experimental region. A design minimiz-

ing the first criterion is called D-optimal, a design minimizing the second is called

A-optimal, and a design minimizing the third is called I-optimal. In many exper-

iments, especially experiments with multiple objectives, it may not be clear how

to formulate the experiment goal in terms of some quantity that can be optimized.

Furthermore, even if we can formulate the problem in this way, finding the optimal

design may be quite difficult.

In many experiments all the inputs at which we will observe the response are

specified in advance. These are sometimes referred to as a single-stage or one-stage

experimental designs. However, there are good reasons for running experiments in

multiple stages. We agree with Box et al (1978) (page 303), who advocate the use

of sequential or multi-stage designs.

“In exploring a functional relationship it might appear reasonable at first sight to

adopt a comprehensive approach in which the entire range of every factor was in-

vestigated. The resulting design might contain all combinations of several levels of

all factors. However, when runs can be made in successive groups, this is an inef-

ficient way to organize experimental programs. The situation relates to the paradox

110 5 Space–Filling Designs

that the best time to design an experiment is after it is finished, the converse of which

is that the worst time is at the beginning, when the least is known. If the entire exper-

iment was designed at the outset, the following would have to be assumed known:

(1) which variables were the most important, (2) over what ranges the variables

should be studied, (3) in what metrics the variables and responses should be con-

sidered)e.g., linear, logarithmic, or reciprocal scales), and (4) what multivariable

transformations should be made (perhaps the effects of variables x1 and x2 would be

most simply expressed in terms of their ratio x1/x2 and their sum x1 + x2.

The experimenter is least able to answer such questions at the outset of an inves-

tigation but gradually becomes more able to do so as a program evolves.

All the above arguments point to the desirability of a sequence of moderately

sized designs and reassessment of the results as each group of experiments becomes

available.”

One consideration in planning an experiment, which is sometimes overlooked, is

whether to use a single-stage or a multi-stage design.

5.1.2 Design Strategies for Computer Experiments

Computer experiments, at least as we consider them here, differ from traditional

physical experiments in that repeated observations at the same set of inputs yield

identical responses. A single observation at a given set of inputs gives us perfect

information about the response at that set of inputs, so replication is unnecessary.

Uncertainty arises in computer experiments because we do not know the exact func-

tional form of the relationship between the inputs and the response, although the

response can be computed at any given input. Any functional models that we use

to describe the relationship are only approximations. The discrepancy between the

actual response produced by the computer code and the response we predict from

the model we fit is our error. We referred to such error as model bias in the previous

subsection.

Based on these observations, two principles for selecting designs in the types of

computer experiments we consider are the following.

1. Designs should not take more than one observation at any set of inputs. (But

note that this principle assumes the computer code remains unchanged over time.

When a design is run sequentially and the computer code is written and executed

by a third party, it may be good policy to duplicate one of the design points

in order to verify that the code has not been changed over the course of the

experiment.)

2. Because we don’t know the true relation between the response and inputs, de-

signs should allow one to fit a variety of models and should provide information

about all portions of the experimental region.

5.1 Introduction 111

If we believe that interesting features of the true model are just as likely to be

in one part of the experimental region as another, if our goal is to be able to do

prediction over the entire range of the inputs, and if we are running a single-stage

experiment it is plausible to use designs that spread the points (inputs, runs) at which

we observe the response evenly throughout the region. There are a number of ways

to define what it means to spread points evenly throughout a region and these lead to

various types of designs. We discuss a number of these in this chapter. Among the

designs we will consider are designs based on selecting points in the experimental

region by certain sampling methods; designs based on measures of distance between

points that allow one to quantify how evenly spread out points are; designs based

on measures of how close points are to being uniformly distributed throughout a

region; and designs that are a hybrid of or variation on these designs. We will refer

to all the designs in this chapter as space-filling or exploratory designs.

When runs of a computer experiment are expensive or time-consuming, and

hence observing the response at a “large” number of inputs is not possible, what

is a reasonable sample size that will allow us to fit the models described in Chapters

2–4? One rule of thumb suggested by Chapman et al (1994) and Jones et al (1998)

is to use a sample size of 10d when the input space is of dimension d. However,

because the “volume” of the design space increases as a power of d, 10d points

becomes a very sparse sample as d increases. Obviously 10 points evenly spread

over the unit interval are much more densely distributed than 100 points in the ten-

dimensional unit cube. So is the 10d rule of thumb reasonable? Loeppky et al (2009)

carefully investigate this issue and conclude that a sample size of 10d is a reasonable

rule of thumb for an initial experiment when d ≤ 5. When the response is sensitive

to relatively few of the inputs, the rule is also reasonable for an initial experiment

for d up to 20 or even larger. Loeppky et al (2009) also discuss diagnostics one can

use to determine whether additional observations are needed (beyond those recom-

mended by the 10d rule of thumb) and approximately how many might be needed to

improve overall fit. They point out that one should always check the accuracy of the

predictor fitted to the data and if it is poor, additional observations (perhaps many)

may be needed.

The complexity of the input-output relationship has a direct bearing on the re-

quired sample size. Polynomial models provide some insight. The minimum number

of points needed to uniquely determine a response surface of order m in d variables

(all monomials of order m or less are included) is

(
m + d

m

)
.

For a second-order response surface (m = 2), the 10d rule of thumb holds up to

d = 16. For a third-order response surface, the 10d rule of thumb holds up to d = 4.

For a fourth-order response surface, the 10d rule of thumb holds up to d = 2. Also,

for an input-output relation such as y = sin(cπx), 0 ≤ x ≤ 1 the 10d rule won’t hold

in one-dimension for large c, assuming one has no prior knowledge of the functional

form of this relationship.

112 5 Space-Filling Designs

In practice does one encounter input-output relationships that produce very com-

plicated response surfaces? Chen et al (2011) discuss a computer experiment con-

cerning bistable laser diodes in which the two-dimensional response surface is quite

rough over a portion of the design space and would require substantially more than

20 observations to accurately approximate.

Although not in the context of computer experiments, It is interesting to note that

Box et al (1978) (page 304) recommend the following for multi-stage designs: “As

a rough general rule, not more than one quarter of the experimental effort (budget)

should be invested in a first design.”

In practice we don’t know the true model that describes the relation between

the inputs and the response. However, if the models we fit to the data come from a

sufficiently broad class, we may be willing to assume some model in this class is

(to good approximation) “correct.” In this case it is possible to formulate specific

criteria for choosing a design and adopt an optimal design approach. Because the

models considered in the previous chapters are remarkably flexible, this approach

seems reasonable for these models. Thus, we discuss some criterion-based methods

for selecting designs in Chapter ??.

5.2 Designs Based on Methods for Selecting Random Samples

In the language of Section 1.3, the designs described in this section are used in

cases when all inputs x are control variables as well as in cases when they are mix-

tures of control and environmental variables. However, most of these designs were

originally motivated by their usefulness in applications where the inputs were all

environmental variables; in this case we denote the inputs by X to emphasize their

random nature. Let y(·) denote the output of the code. When the inputs are environ-

mental variables, the most comprehensive objective would be to find the distribution

of the random variable Y = y(X) when X has a known distribution. If, as is often

the case, this is deemed too difficult, the easier problem of determining some aspect

of its distribution such as its mean E {Y} = µ or its variance is considered. Several

of the designs introduced in this section, in particular the Latin hypercube design,

were developed to solve the problem of estimating µ in such a setting. However,

the reader should bear in mind that such designs are useful in more general input

settings.

5.2 Sampling-Based Designs 113

5.2.1 Designs Generated by Elementary Methods for Selecting

Samples

Intuitively, we would like designs for computer experiments to be space-filling when

prediction accuracy over the entire experimental region is of primary interest. The

reason for this is that interpolators are used as predictors (e.g., the BLUP 3.3.4 or

its Bayesian counterparts such as those that arise as the means of the predictive dis-

tributions derived in Section 3.3). Hence, the prediction error at any input site is a

function of its location relative to the design points. Indeed, we saw, in Section ??,

that the prediction error is zero at each of the design points. For this reason, designs

that are not space-filling, for example, designs that concentrate points on the bound-

ary of the design space, can yield predictors that perform quite poorly in portions of

the experimental region that are sparsely observed.

Deterministic strategies for selecting the values of the inputs at which to observe

the response are to choose these values so they are spread evenly throughout or fill

the experimental region. There are several methods that might be used to accomplish

this, depending on what one means by “spreading points evenly” or “filling the

experimental region.”

A very simple strategy is to select points according to a regular grid pattern

superimposed on the experimental region. For example, suppose the experimen-

tal region is the unit square [0, 1] × [0, 1]. If we wish to observe the response at 25

evenly spaced points, we might consider the grid of points {0.1, 0.3, 0.5, 0.7, 0.9} ×
{0.1, 0.3, 0.5, 0.7, 0.9}.

There are several statistical strategies that one might adopt. One possibility is to

select a simple random sample of points from the experimental region. In theory,

there are infinitely many points between 0 and 1 and this makes selecting a simple

random sample problematic. In practice, we only record numbers to a finite number

of decimal places and thus, in practice, the number of points between 0 and 1 can

be regarded as finite. Therefore, we can assume our experimental region consists of

finitely many points and select a simple random sample of these.

Simple random sampling in computer experiments can be quite useful. If we sam-

ple the inputs according to some distribution (for example, a distribution describing

how the values are distributed in a given population), we can get a sense of how the

corresponding outputs are distributed and this can serve as the basis for inferences

about the distribution of the output. However, for many purposes, other sampling

schemes, such as stratified random sampling, are preferable to simple random sam-

pling. Even if the goal is simply to guarantee that the inputs are evenly distributed

over the experimental region, simple random sampling is not completely satisfac-

tory, especially when the sample sizes are relatively small. With small samples in

high-dimensional experimental regions, the sample will typically exhibit some clus-

tering and fail to provide points in large portions of the region.

To improve the chances that inputs are spread “evenly” over the experimental

region, we might use stratified random sampling. If we want a design consisting

of n points, we would divide the experimental region into n strata, spread evenly

114 5 Space-Filling Designs

throughout the experimental region, and randomly select a single point from each.

Varying the size and position of the strata, as well as sampling according to different

distributions within the strata, allows considerable flexibility in selecting a design.

This may be more or less useful, depending on the purpose of the computer ex-

periment. For example, we may wish to explore some portions of the experimental

region more thoroughly than others. However, if the goal is simply to select points

that are spread evenly throughout the experimental region, spacing the strata evenly

and sampling each according to a uniform distribution would seem the most natural

choice.

If we expect the output to depend on only a few of the inputs (this is sometimes

referred to as factor sparsity), then we might want to be sure that points are evenly

spread across the projection of our experimental region onto these factors. A design

that spreads points evenly throughout the full experimental region will not necessar-

ily have this property. Alternatively, if we believe our model is well approximated

by an additive model, a design that spreads points evenly across the range of each

individual input (one-dimensional projection) might be desirable. For a sample of

size n, it can be difficult to guarantee that a design has such projection properties,

even with stratified sampling. Latin hypercube sampling, which we now discuss, is

a way to generate designs that spread observations evenly over the range of each

input separately.

5.2.2 Designs Generated by Latin Hypercube Sampling

Designs generated by Latin hypercube sampling are called Latin hypercube designs

(LHD) throughout this book. We begin by introducing Latin hypercube (LH) sam-

pling when the experimental region is the unit square [0, 1]2. To obtain a design

consisting of n points, divide each axis [0, 1] into the n equally spaced intervals

[0, 1/n), . . . , [(n− 1)/n, 1]. This partitions the unit square into n2 cells of equal size.

Now, fill these cells with the integers 1, 2, . . . , n so as to form a Latin square, i.e.,

an arrangement in which each integer appears exactly once in each row and in each

column of this grid of cells. Select one of the integers at random. In each of the

n cells containing this integer, select a point at random. The resulting sample of n

points are a LHD of size n (see Figure 5.2 for an example with n = 5). The method

of choosing the sample ensures that points are spread evenly over the values of

each input variable. Of course, such a LH sample could select points that are spread

evenly along the diagonal of the square (see Figure 5.3). Although the points in such

a sample have projections that are evenly spread out over the values of each input

variable separately, we would not regard them as evenly spread out over the entire

unit square.

We now describe a general procedure for obtaining a LH sample of size n from

X = (X1, . . . , Xd) when X has independently distributed components. Stein (1987)

discusses the implementation of LH sampling when X has dependent components,

but we will not consider this case here.

5.2 Sampling-Based Designs 115

In the independence case the idea is as follows. Suppose that a LH sample of size

n is to be selected. The domain of each input variable is divided into n intervals.

Each interval will be represented in the LH sample. The set of all possible Cartesian

products of these intervals constitutes a partitioning of the d-dimensional sample

space into nd “cells.” A set of n cells is chosen from the nd population of cells in

such a way that the projections of the centers of each of the cells onto each axis

yield n distinct points on the axis; then a point is chosen at random in each selected

cell.

In detail, we construct the LH sample as follows. For k = 1, . . . , d, let Fk(·)

denote the (marginal) distribution of Xk, the kth component of X and, for simplicity,

assume that Xk has support [ak, bk]. We divide the kth axis into n parts, each of which

has equal probability, 1/n, under Fk(·). The division points for the kth axis are

F−1
k (

1

n
), . . . , F−1

k (
n − 1

n
).

To choose n of the cells so created, let Π = (Π jk) be an n × d matrix having permu-

tations of {1, 2, . . . , n} as columns which are randomly selected from the set of all

possible permutations. Then the “upper-left hand” coordinates of the jth cell in IRd

are

F−1
k (n−1(Π jk − 1)) , k = 1, . . . , d,

with the convention F−1
k

(0) = ak.

For j = 1, . . . , n, let X jk, k = 1, . . . , d, denote the kth component of the jth vector,

X j. Then we define the LH sample to have values

X jk = F−1
k (

1

n
(Π jk − 1 + U jk)),

where the {U jk} are independent and identically distributed U[0, 1] deviates, for

j = 1, . . . , n and k = 1, . . . , d. In sum, the jth row of Π identifies the cell that X j is

sampled from, while the corresponding (independently generated) uniform deviates

determine the location of X j within the sampled cell.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(1,2)

(2,3)

(3,1)

Fig. 5.1 Cells selected by the Latin hypercube sample (1,2), (2,3), and (3,1)

116 5 Space-Filling Designs

Example 5.1. Suppose X = (X1, X2) is uniformly distributed over [0, 1] × [0, 1] so

that F−1
k

(w) = w, 0 < w < 1. To obtain a LH sample of size n = 3, we compute

X jk =
1

3

(
Π jk − 1 + U jk

)
, j = 1, 2, 3; k = 1, 2.

The actual sample depends on the specific choice of Π and the {U jk}.
To envision the pattern of the LH sample, divide the unit interval in each dimen-

sion into [0,1/3), [1/3,2/3), and [2/3,1], yielding a partition of [0, 1]× [0, 1] into nine

squares (cells) of equal area. In the LH sample, each of these subintervals will be

represented exactly once in each dimension. For simplicity of discussion, suppose

we label these subintervals as 1, 2, and 3 in the order given above. One possible LHD

would involve points randomly sampled from the (1,1), (2,3), and (3,2) squares and

another possible design from the (1,2), (2,3), and (3,1) squares. Figure 5.1 plots the

cells selected by the second design. These two selections correspond to the permu-

tations

Π =


1 1

2 3

3 2

 and Π =


1 2

2 3

3 1

 . (5.2.1)

Note that in each dimension, each subinterval appears exactly once. Because each

subinterval is of length 1/3, the addition of U jk/3 to the left-hand boundary of the

selected subinterval serves merely to pick a specific point in it. �

In the computer experiment setting, the input variables x = (x1, x2, . . . ,xd) are

not regarded as random for purposes of experimental design. As in Example 5.1,

suppose that each input variable has been scaled to have domain [0,1]. Denoting the

kth component of x j by x jk for k = 1, . . . , d, suppose that we obtain a LHD from a

given Π as follows:

x jk =
Π jk − 0.5

n
, j = 1, . . . , n; k = 1, . . . , d .

This corresponds to taking U jk = 0.5 for each j = 1, . . . , n and k = 1, . . . , d rather

than as a sample from a U[0, 1] distribution. The “cells” are now identified with all

d-dimensional Cartesian products of the intervals {(0, 1
n
], (1

n
, 2

n
], . . . , (1 − 1

n
, 1]}, and

each x j is sampled from the center of the cell indicated by the jth row of Π . An

example of a LHD for n = 5 and d = 2 is given in Figure 5.2 with its associated Π

matrix.

As mentioned previously, LHDs need not be space-filling over the full experi-

mental region. To illustrate this point, consider the LHD for n = 5 and d = 2 that is

shown in Figure 5.3, which one might not view as space-filling. One consequence

of computing responses at this set of inputs is that we would expect a predictor fitted

using this design to generally perform well only for x1 ≈ x2. For example, consider

the deterministic function

y(x1, x2) =
x1

1 + x2

, X = [0, 1] × [0, 1] .

5.2 Sampling-Based Designs 117

Π =



3 5

4 2

2 1

1 3

5 4



Fig. 5.2 A space-filling Latin hypercube design and the corresponding permuation Π .

The MLE-EBLUP was fitted to the observed responses using the training data for

both of the designs shown in Figures 5.2 and 5.3 (Section 3.3). The predictor was

based on the stochastic process

Y(x1, x2) = β0 + Z(x1, x2),

where Z(·) is a zero mean Gaussian stochastic process with unknown process vari-

ance and product power exponential correlation function (2.4.7).

118 5 Space-Filling Designs

Π =



1 1

2 2

3 3

4 4

5 5



Fig. 5.3 A non space-filling Latin hypercube design

The prediction error |y(x1, x2)−Ŷ(x1, x2)|was calculated on a grid of 100 equally-

spaced (x1, x2) points for each design. Figure 5.4 plots a comparison of the predic-

tion errors for the two designs where the symbol “1” (“0”) indicates that the predic-

tion error for the design of Figure 5.3 is larger (smaller) than the prediction error

for the design of Figure 5.2. The space-filling design of Figure 5.2 clearly yields

a better predictor over most of the design space except for the diagonal where the

LHD in Figure 5.3 collects most of its data.

5.2 Sampling-Based Designs 119

Fig. 5.4 Comparison of two LHDs. The plotting symbol “1” (“0”) at location (x1, x2) means that

the design in Figure 5.2 had lower (higher) mean squared prediction error than the design in Fig-

ure 5.3.

It is apparent from this discussion that although all LHDs possess desirable

marginal properties, only a subset of these designs are truly “space-filling.” Sub-

section 5.3.3 will discuss design criteria that Welch (1985) has successfully applied

to select space-filling LHDs for use in computer experiments.

LHDs have been used extensively in the computer experiments literature; see,

for example, Welch et al (1992) and Bernardo et al (1992). Other examples include

Kennedy and O’Hagan (2001), Butler (2001), and Craig et al (2001). Because of

their widespread use, it is worth examining in some detail the properties of LHDs

in the setting, where all inputs are all environmental variables.

Designs based on LH sampling were introduced by McKay et al (1979) as a

competitor to simple random sampling and stratified sampling when estimating the

mean, variance, or distribution function of an output random variable. Stein (1987)

and Owen (1992b) established additional large sample properties of LH sampling

for estimating the mean E {Y} . We now look carefully at some of the results in these

papers. This will provide greater insight into the actual properties of LHDs. We then

reconsider their use in computer experiments.

5.2.3 Properties of Sampling-Based Designs

Suppose that a random vector of inputs X = (X1, . . . , Xd) to the computer output y(·)

is distributed according to the known joint distribution F(·) over the experimental

region X ≡ [ai, bi]
d ⊂ IRd. Based on a sample X1, X2, . . . , Xn from the distribution

F(·), we are interested in estimating the mean of g(Y) where Y = y(X) and g(·) is a

known function of the real-valued argument. This mean is

µ = E{g(Y)} =
∫

X
g(y(x)) f (x)dx.

We consider the properties of the naive moment estimator

T = T (y(X1), . . . , y(Xn)) =
1

n

n∑

j=1

g(y(X j))

120 5 Space-Filling Designs

when X1, X2, . . . , Xn are either a simple random sample, a stratified random sample,

or a Latin hypercube sample. In this derivation of the properties of T , we assume

that the coordinates of X are independent, each with density f (·). Let

σ2 = Var{g(Y)}.

For clarity denote the estimator T by TR when simple random sampling is used

and by TL when LH sampling is used. McKay et al (1979) show the following.

Theorem 5.1. If y(x1, . . . , xd) is monotonic in each of its arguments, and g(w) is a

monotonic function of w ∈ IR, then Var{TL} ≤ Var{TR}.

At this point a few cautions are in order. First, these results show only that for

estimating the expected value of g(Y) over the experimental region, designs based

on proportional sampling are better than those based on simple random sampling,

and, under certain conditions, LHDs are better than those based on simple random

sampling. Designs based on LH sampling need not always be better than designs

based on simple random sampling nor do we know if designs based on LH sampling

are better than other types of designs, such as stratified sampling. Note, however,

that the formulas derived in Section ?? and Section ?? do allow one to compare

designs based on LH and stratified proportional sampling.

Second, in most computer experiments we do not know the relation between the

output y(x) and the component inputs x1, . . . , xd. It is unlikely that we would be will-

ing to assume this relationship is monotonic. And if we make such an assumption,

the conditions on g(·) given in the above theorem imply that the extrema of g(·) are

on the boundary of the experimental region. If, as is often the case, we are interested

in finding the extrema of g(·) and we know the extrema are on the boundary of the

experimental region, we would want to take observations near or on the boundary

rather than using a LHD.

Third, the above properties are relevant if we are interested in estimating the

expected value of g(Y) over the experimental region. To illustrate, let I{E} denote

the indicator function as E (1 or 0, as E is true or false) and y f ixed be a given point

in IR. Then setting g(y) = y yields the mean of Y over the experimental region while

setting g(y) = I{y ≤ y f ixed} produces the cumulative distribution function of Y at

y f ixed. However, finding the expected value of g(Y) over the experimental region

is not usually the goal in computer experiments. More typically, our goal is to fit a

model that approximates g(·) over the experimental region or to determine the points

in the experimental region that are extrema of g(·). Thus, although LHDs are quite

popular in computer experiments, the above results do not indicate whether they

have good properties in many of the situations for which computer experiments are

conducted. Better justification comes from the results we now describe.

Additional properties of sample means based on Latin hypercube samples have

been established by Stein (1987) and Owen (1992b). For simplicity, we take g(y) = y

for the remainder of this section and use Y = 1
n

∑n
j=1 y(X j) to estimate

∫
X y(x)dF(x).

Let Fi(·) denote the marginal distribution of Xi, the ith coordinate of X. As above,

we assume the coordinates of X are independent so

5.2 Sampling-Based Designs 121

F(x) =

d∏

i=1

Fi(xi).

For 1 ≤ j ≤ d, let X− j denote X omitting X j,

F− j(x− j) =

d∏

i=1,i, j

Fi(xi)

the distribution function of X− j, x− j the corresponding argument extracted from x,

and X− j denote the support of F− j(·). Assuming
∫
X y2(x)dF(x) < ∞, we decompose

y(x) as follows. Define

µ =

∫

X
y(x) dF(x) and α j(x j) =

∫

X− j

[
y(x) − µ] dF− j(x− j).

Then µ is the overall mean, the {α j(x j)} are the “main effect” functions correspond-

ing to the coordinates of x, and r(x) = y(x) − µ − ∑d
i=1 αi(xi) is the residual (from

additivity) of y(x). These quantities are continuous analogs of an “analysis of vari-

ance” decomposition of y(x). Further reason for this designation is the fact that

∫ b j

a j

α j(x j) dFi(x j) = 0 and

∫

X− j

r(x) dF− j(x− j) = 0

for any x j and all j.

Stein (1987) shows that for large samples, Var
{
Y
}

is smaller under LH sampling

than simple random sampling unless all main effect functions are 0. To be precise,

Stein (1987) proves the following expansions for the variance of Y under the two

sampling schemes.

Theorem 5.2. As n → ∞, under Latin hypercube sampling and simple random

sampling we have

VarLHS

{
Y
}
=

1

n

∫

X
r2(x)dF(x) + o(n−1) and

VarS RS

{
Y
}
=

1

n

∫

X
r2(x)dF(x) +

1

n

d∑

i=1

∫ bi

ai

α2
i (xi)dFi(xi) + o(n−1),

respectively.

The implication of this expansion is that, unless all α j(·) are identically 0, in the

limit, LH sampling has a smaller variance than simple random sampling.

Further, not only can the variance of Y be estimated but also the normality of Y

can be established. For simplicity, we assume X = [0, 1]d and that F(·) is uniform.

More general cases can often be reduced to this setting by appropriate transforma-

tions. Owen (1992b) shows that Y computed from inputs based on LH sampling is

122 5 Space-Filling Designs

approximately normally distributed for large samples. This can be used as the basis

for statistical inference about µ. Owen (1992b) proves the following.

Theorem 5.3. If y(x) is bounded, then under LH sampling,
√

n(Y − µ) tends in dis-

tribution to N
(
0,

∫
X r2(x)dx

)
as n→ ∞.

Owen (1992b) also provides estimators of the asymptotic variance

∫

X
r2(x) dx

to facilitate application of these results to computer experiments.

Section ?? of the Chapter Notes describes the use of LHDs in a generalization

of these constant mean results to a regression setting, which has potential for use in

computer experiments.

5.2.4 Extensions of Latin Hypercube Designs

There are several ways in which LHDs have been extended. Randomized orthogonal

arrays are one such extension. An orthogonal array O on s symbols of strength t

is an n × d (p ≥ t) matrix whose entries are the s symbols arranged so that in

every n × t submatrix of O, all of the st possible rows appear the same number λ of

times; obviously n = λst. We denote such an orthogonal array by OA(n, d, λ, s, t).

For additional discussion regarding orthogonal arrays see Raghavarao (1971) or Wu

and Hamada (2000).

Owen (1992a) describes a procedure for generating n point space-filling designs

in p dimensions from the columns of an n×p orthogonal array. The resulting designs

are called randomized orthogonal arrays. If one plots the points of a randomized or-

thogonal array generated from an orthogonal array of strength t, in t or fewer of the

coordinates, the result will be a regular grid. For details of concerning randomized

orthogonal arrays, see Owen (1992a). Example 5.3 illustrates the method in 3 di-

mensions based on an orthogonal array of strength 2.

Example 5.2. A simple example of a randomized orthogonal array is the following.

Suppose we take n = 3, s = 3, t = 1, and λ = 1. An orthogonal array on three symbols

of strength t = 1 is the 3 × 2 matrix, both of whose columns are the integers 1, 2, 3.


1 1

2 2

3 3



From this, a randomized orthogonal array is generated by following the procedure

described in Example 5.1 used to generate the design displayed in Figure 5.1 (per-

mute the second column of the above orthogonal array using the second permutation

in (5.2.1)). The resulting design is a LHD and in this example, the projections into

5.2 Sampling-Based Designs 123

each of the two dimensions (inputs) are uniform. Notice that, in general, an orthog-

onal array on s symbols of strength one with n = s and λ = 1 is the n × p matrix, all

of whose columns are the integers 1, 2, . . . , s. By following the procedure described

in Subsection 5.2.2, one can generate a randomized orthogonal array which, in fact,

is a LHD in d dimensions. �

Example 5.3. Another example of a randomized orthogonal array is the following.

Suppose we take n = 9, s = 3, t = 2, and λ = 1. An orthogonal array on three symbols

of strength two is the 9 × 3 matrix



1 1 1

1 2 2

1 3 3

2 1 2

2 2 3

2 3 1

3 1 3

3 2 1

3 3 2



To construct a randomized orthogonal array, we use this 9×3 matrix. Divide the unit

cube [0, 1]×[0, 1]×[0, 1] into a 3×3×3 grid of 27 cells (cubes). Let (1,1,1) denote the

cell (cube) [0, 1
3
]×[0, 1

3
]×[0, 1

3
], (1,1,2) denote the cell [0, 1

3
]×[0, 1

3
]×[1

3
, 2

3
], (1,1,3)

denote the cell [0, 1
3
]× [0, 1

3
]× [2

3
, 1], . . . , and (3,3,3) the cell [2

3
, 1]× [2

3
, 1]× [2

3
, 1].

Each row of the above 9 × 3 matrix correponds to one of these 27 cells. The point

in the center of the nine cells determined by the rows of the matrix yields a nine

point randomized orthogonal array. Projected onto and two-dimensional subspace,

the design looks like a regular 3×3 grid. Instead of selecting the points in the centers

of the nine cells, one could select a point a random from each of these cells. The

resulting projections onto two-dimensional subspaces would not be a regular grid,

but would be evenly spaced in each of the two-dimensional subspaces. �

Although randomized orthogonal arrays extend the projection properties of

LHDs to more than one dimension, they have the drawback that they only exist

for certain values of n, namely for n = λst, and only for certain values of d. Also,

because n = λst, only for relatively small values of s and t will the designs be prac-

tical for use in computer experiments in which individual observations are time-

consuming to obtain and hence for which n must be small. See Tang (1993) and

Tang (1994) for additional information about the use of randomized orthogonal ar-

rays in computer experiments.

Cascading LHDs are another extension of LHDs. Cascading LHDs are intro-

duced in Handcock (1991) and can be described as follows. Generate a LHD. At

each point of this design, consider a small region around the point. In this small

region, generate a second LHD. The result is a cluster of small LHDs and is called a

cascading Latin hypercube design. Such designs allow one to explore both the local

(in small subregions) and the global (over the entire experimental region) behavior

of the response.

124 5 Space-Filling Designs

Suppose one uses a LHD consisting of n points in IRd. After fitting a predictor

to the data, suppose one decides the fit is inadequate and m additional runs of the

computer simulator are necessary. Is it possible to select the m runs in such a way

that the resulting set of m+n runs is a LHD? In general, the answer is no. Figure 5.5

displays a 2-point LHD in two dimensions with the two points randomly placed in

two of the four cells. This cannot be extended to a 3-point LHD in two dimensions,

because both points are in the same cell when the design space is partitioned into

nine cells (outlined by the dashed lines). However, the 2-point LHD could be ex-

tended to a 4-point LHD in two dimensions because the two points would now be

in two separate cells when the design space is partitioned into 16 cells.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.5 A 2-point LHD that cannot be extended to a 3-point LHD. Points are placed at random in

the four cells for a 2-point LHD. The cells are outlined by the solid lines. The dashed lines outline

the nine cells for a 3-point LHD. Notice both points are in the same cell.

Notice that if in the original LHD the points were chosen at random in the n

cells, and if m = an for some positive integer a, it is possible to add the m points

in such a way the m + n points are a LHD. In the initial LHD, the domain of each

input variable was subdivided into n intervals. Subdivide each of these n intervals

into a + 1 intervals so that now the domain of each input variable is subdivided into

(a+ 1)n intervals. The Cartesian product of these intervals constitutes a partitioning

of the d-dimensional sample space into [(a + 1)n]d cells. Each of the n points in the

original design are in exactly one of these cells. Choose a subset of (a + 1)n cells in

such a way that they include the n cells containing points from the original design

and so that the projections of the centers of all (a+ 1)n points onto each component

axis yield (a+1)n distinct points on the axis. In terms of the method described before

Example 5.1, this will mean that one can select only certain (a+ 1)n× d matricesΠ

having permutations of {1, 2, . . . , (a + 1)n} as columns. Notice that if in the original

LHD the points were chosen at the center of the n cells, it is still possible to add m

points in such a way that the resulting design is a LHD with points at the center of

cells, provided a is even.

5.3 Special Latin Hypercube Designs 125

5.3 Latin Hypercube Designs Satisfying Additional Criteria

Figure 5.3 displays an LHD that would probably not be considered space-filling

because the points lie along a straight line and are perfectly correlated. By compar-

ison, the LHD in Figure 5.2 appears more space-filling and the points appear much

less correlated. ls it possible to identify special types of LHDs that have additional

desirable properties?

5.3.1 Orthogonal Array-Based Latin Hypercube Designs

A possible strategy for avoiding LHDs that do not appear to be space-filling is to se-

lect those for which the points are uncorrelated. Owen (1992a) and Tang (1993)

discuss methods for constructing an LHD with an underlying orthogonal array

structure, thus assuring that in some dimension the points in the LHD appear un-

correlated. Tang (1993) uses an orthogonal array to specify a restricted permuta-

tion of {1, 2, . . . , n} in selecting the matrix Π from which the LHD is formed. Let

OA(n, d, 1, s, t) be an n × d orthogonal array on s symbols of strength t with λ = 1.

For the kth column of OA(n, d, 1, s, t) let rk,l+1 be the number of runs with entry l.

Note that rk,l1+1 = rk,l2+1 = r for all l1 and l2 so that rs = n. We can form a Π

based on OA(n, d, 1, s, t) by selecting each column of OA(n, d, 1, s, t) and replac-

ing the r entries of OA(n, d, 1, s, t) with level l by a permutation of the integers

rl + 0, rl + 1, . . . , rl + (r − 1) for all l = 1, 2, . . . , s. The LHD formed from this Π

will have all univariate projections uniformly distributed and all t-variate projections

uniformly distributed. Tang (1993) refers to an LHD constructed in this way as an

OA-based LHD.

Another way to think about an OA-based LHD is that the structure of the orthog-

onal array is used to restrict the placement of the points within the unit hypercube

(assume for this discussion that we are interested in LHDs on the d-dimensional

unit hypercube). In the context of the previous discussion, for the kth column of

OA(n, d, 1, s, t) we consider the non-overlapping division of [0, 1] into s equal length

intervals of the form [0, 1,s
)
∪ [1,s

,
2,L
)
∪ · · · ∪ [s−1,s

,
1]. Because OA(n, d, 1, s, t) is an

orthogonal array, each of the s symbols appears equally often in each column and

we let r denote the number of times each symbol appears in a given column. For a

given level l j = 0, 1, . . . , s− 1 we define the non-overlapping division of the interval

[
l j ,s

,

l j+1,s

)
into r subintervals of the form

[
l j, s

+

i, sr

,

l j, s

+

i + 1, sr

)
, i = 0, 1, . . . , r − 1.

For column k let pk1
, pk2

, . . . , pkr
be a random permutation of the integers 0, 1, . . . , r−

1. Then the r points corresponding to level l j are randomly (or systematically) placed

one each in the Cartesian product intervals

126 5 Space-Filling Designs

[
l j, s

+

pki
, sr

,

l j, s

+

pki
+ 1, sr

)
, k = 1, 2, . . . , d.

Notice for each column of OA(n, d, 1, s, t), n = rs and the Latin hypercube intervals

[i,n
,

i+1,n
)

are identical to the substratification described so that the resulting array,

with placement of points imposed by the strength t orthogonal array is indeed an

LHD with t-dimensional projection properties consistent with OA(n, d, 1, s, t).

Example 5.4. Suppose we start with the OA(4, 2, 1, 2, 2)



1 1

1 2

2 1

2 2



To obtain Π , in each column we replace the symbol 1 with a random permutation

of the integers 1, 2, and the symbol 2 with a random permutation of the integers 3,4

One possibility is 

1 2

2 1

4 3

3 4



�

Example 5.5. Suppose we start with the OA(9, 3, 1, 3, 2



1 1 1

1 2 2

1 3 3

2 1 2

2 2 3

2 3 1

3 1 3

3 2 1

3 3 2



To obtainΠ , in each column we replace the symbol 1 with a random permutation of

the integers 1, 2, 3, the symbol 2 with a random permutation of the integers 4, 5, 6,

and the symbol 3 by a random permutation of the integers 7, 8, 9. One possibility is

5.3 Special Latin Hypercube Designs 127



1 3 2

3 4 5

2 8 7

6 2 4

5 5 9

4 7 1

9 1 8

7 6 3

8 9 6



�

Note that in the step for constructing Π from the initial orthogonal array, many

choices for the permutations are possible, hence from a given initial orthogonal

array, many Π can be constructed. One can impose an additional criterion to select

one of theseΠ , thus insuring that the final LHD has an additional desirable property.

The orthogonal array structure imposed on the design is appealing in that it leads

to uniformity in all t-variate projections when the strength of the orthogonal array

is t. This helps achieve an additional degree of space-fillingness not easily achieved

by a random LHD or one that is numerically optimized according to some criterion.

An important drawback is that OA-based LHDs are limited in the run sizes that

are possible. For example, even starting with an orthogonal array on 2 symbols of

strength 2 the run size must be a multiple of 4. In addition, the method of construc-

tion is not always readily adaptable to algorithmic generation. For these reasons

Loeppky et al (2012) introduce a more flexible class of designs, called projection ar-

ray based designs, that have space-filling properties analogous to OA-based LHDs,

but exist for all run sizes.

5.3.2 Orthogonal Latin Hypercube Designs

Another attempt to find LHDs that have additional good properties is due to Ye

(1998). He discusses a method for constructing LHDs for which all columns are

orthogonal to each other. In general, the columns of an n × d LHD are formed from

an n × d matrix Π whose columns are permutations of the integers {1, 2, . . . , n},
as discussed in Subsection 5.2.2. By restricting to only certain permutations of

{1, 2, . . . , n}, Ye (1998) is able to generate LHDs with orthogonal columns, which he

calls orthogonal latin hypercubes (OLHs). The method of construction, in particular

the set of permutations needed to generate orthogonal columns is as follows.

Let e be the 2m−1 × 1 column vector with entries {1, 2, . . . , 2m−1}. Define the per-

mutations

Ak =

2m−k−1∏

j=1



2k−1∏

i=1

((j − 1)2k + i j2k + 1 − i)


, k = 1, . . . ,m − 1 (5.3.1)

128 5 Space-Filling Designs

where
∏

represents the composition of permutations and (r s) represents the

transposition of rows r and s. An quivalent dfinition of thse permutations expressed

as permutation matrices is

Ak = {
m−1−k⊗

j=1

I}
⊗
{

k⊗

i=1

R} (5.3.2)

where I is the 2 × 2 identity matrix,

R =

(
0 1

1 0

)

and
⊗

is the Kronecker product.

Next, let M be the 2m−1 × (2m − 2) matrix with columns

{e,A1e, . . . ,Am−1e,Am−1A1e, . . . ,Am−1Am−2e}.

For k = 1, . . .m − 1 define

ak = {
m−1⊗

j=1

B j}

where

Bm−k =

(
−1

1

)
,Bi =

(
1

1

)

for i , m − k. Also denote the 2m−1 × 1 vector of 1s by 1.

Now define S to be the 2m−1 × (2m − 2) matrix with columns

{1, a1, . . . , am−1, a1 × a2, . . . , a1 × am−1}.

where here × is the element wise product. Let T = M × S. Finally, consider the

2m + 1 × (2m − 2) matrix O whose first 2m−1 rows are T, whose next row consists

of all 0s, and whose last 2m−1 rows are the “mirror image” of T, namely the rows of

−T in reverse order. From O remove the row consisting of all 0s and rescale levels

be equidistant. Let O∗ denote the resulting 2m × (2m − 2) matrix.

Ye (1998) shows that the columns of O are orthogonal to each other, the elemen-

twise square of each column of O is orthogonal to all the columns of O, and that

the elementwise product of every two columns of O is orthogonal to all columns

in O. In other words, if O is used as the design matrix for a second-order response

surface, all estimates of linear, bilinear, and quadratic effects are uncorrelated with

the estimates of linear effects. The same holds true for O∗.

Example 5.6. Consider the case where m = 3. Then

5.3 Special Latin Hypercube Designs 129

A1 =

2∏

j=1

((j − 1)2 + 1 j2)

= (1 2)(3 4)

A2 =

2∏

i=1

(i 4 + 1 − i)

= (1 4)(2 3)

and so

e = (1, 2, 3, 4)⊤

A1e = (2, 1, 4, 3)⊤

A2e = (4, 3, 2, 1)⊤

A2A1e = (3, 4, 1, 2)⊤

and

M =



1 2 4 3

2 1 3 4

3 4 2 1

4 3 1 2


.

Next, notice

a1 =

(
1

1

)⊗(
−1

1

)

=



−1

1

−1

1



a2 =

(
−1

1

)⊗(
1

1

)

=



−1

−1

1

1



so that

130 5 Space-Filling Designs

S = {1, a1, a2, a1 × a2} =



1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1


.

Then

T =M × S =



1 −2 −4 3

2 1 −3 −4

3 −4 2 −1

4 3 1 2


.

Hence,

O =



1 −2 −4 3

2 1 −3 −4

3 −4 2 −1

4 3 1 2

0 0 0 0

−4 −3 −1 −2

−3 4 −2 1

−2 −1 3 4

−1 2 4 −3



and

O∗ =



0.5 −1.5 −3.5 2.5

1.5 0.5 −2.5 −3.5

2.5 −3.5 1.5 −0.5

3.5 2.5 0.5 1.5

−3.5 −2.5 −0.5 −1.5

−2.5 −3.5 −1.5 0.5

−1.5 −0.5 2.5 3.5

−0.5 1.5 3.5 −2.5



�

Ye (1998) also shows that the construction described above can be modified to

yield a class of OLHs. First, one can replace e by any of its permutations. Second,

one can reverse any of the signs of any subset of columns of O or O∗. The resulting

arrays are all OLHs in the sense of having all the properties mentioned prior to

Example 5.6.

5.3.3 Symmetric Latin Hypercube Designs

Unfortunately, OLHs exist only for very limited values of n, namely n = 2m or

n = 2m + 1,m ≥ 2. Ye et al (2000) introduce a more general class of LHDs, called

symmetric LHDs, to overcome this limitation. An LHD is called a symmetric LHD

(SLHD) if it has the following property: in an n × d LHD with levels 1, 2, . . . , n, if

(a1, a2, . . . , ad) is one of the rows, then (n + 1 − a1, n + 1 − a2, . . . , n + 1 − ad) must

5.3 Special Latin Hypercube Designs 131

be another row. Ye et al (2000) do not discuss the construction of SLHDs, but when

n is even one obtains an SHLD as follows. The first row can be any 1 × d vector

(a11, a12, . . . , a1d) where the (a1 j are elements of {1, 2, . . . , n}. The second row is

(n + 1 − a11, n + 1 − a12, . . . , n + 1 − a1d). The third row can be any 1 × d vector

(a31, a32, . . . , a3d) where a3 j can be any of the integers 1, 2, . . . , n that is not equal to

either a1 j or n + 1 − a1 j. The fourth row is (n+ 1 − a31, n+ 1 − a32, . . . , n+ 1 − a3d).

Continue on in this manner, adding the odd rows so that the entries in column j

have not year appeared in the previous rows of the column. The even rows have

entries n + 1 minus the entry in the previous row. When n is odd let the first row be

(n+1
2
, n+1

2
, . . . , n+1

2
). The second row can be any 1×d vector (a21, a22, . . . , a2d) where

the a2 j are elements of {1, 2, . . . , n} except n+1
2

. The third row is (n+ 1− a21, n+ 1−
a22, . . . , n+1−a2d). The fourth row can be any 1×d vector (a41, a42, . . . , a4d) where

a4 j can be any of the integers 1, 2, . . . , n that is not equal to n+1
2

, a2 j or n + 1 − a3 j.

Continue on in this manner, adding the even rows so that the entries in column j have

not year appeared in the previous rows of the column. The odd rows have entries

n + 1 minus the entry in the previous row.

Note that the non space-filling LHD in Figure 5.3 is an SLHD, so SLHDs need

not be “good” LHDs.

Example 5.7. To construct an SLHD with n = 10 and d = 3, suppose we begin

with row (1, 6, 6). Following the algorithm described previously, we might obtain

the following SLHD. 

1 6 6

10 5 5

2 2 3

9 9 8

3 1 9

8 10 2

4 3 4

7 8 7

5 7 1

6 4 10



To construct an SLHD with n = 9 and d = 3, suppose we begin with rows

(5, 5, 5) and (1, 6, 6). Following the algorithm described previously, we might obtain

the following SLHD. 

5 5 5

1 6 6

9 4 4

2 2 3

8 8 7

3 1 9

7 9 1

4 3 8

6 7 2



�

132 5 Space-filling Designs

Ye et al (2000) point out that SLHDs have some orthogonality properties. In a

polynomial response surface, least squares estimation of the linear effect of each

variable is uncorrelated with all quadratic effects and bi-linear interactions (but not

necessarily with the linear effects of other variables). This follows from results in

Ye (1998) because OLHs have the same symmetry properties as SLHDs but also

possess additional orthogonality that guarantees that linear effects are uncorrelated.

SLHDs form a subclass of all LHDs. As we discuss later, one can apply addi-

tional criteria to select a particular design from the class of all n × d LHDs, from

the class of all n × d OLHs, or from the class of all n × d SLHDs. For the latter, Ye

et al (2000) propose a column-wise exchange algorithm that replaces an SLHD with

another SLHD, allowing one to search the class of n × d SLHDs for a design that

optimizes some additional property of the design.

The orthogonality properties of OLHs and SLHDs are useful if one plans to fit

second order or higher response surface models to the data using standard least

squares. However, if one intends to fit a predictor, such as the EBLUP discussed in

Chapter 3, in which the generalized least squares estimate of the regression param-

eters is used, the benefits of orthogonality are less clear.

5.4 Designs Based on Measures of Distance

In this subsection, we consider criteria for selecting a design that are based on a

measure or metric that quantifies the spread of a set of points. For all distance-based

criteria discussed below, the domain of each input is normalized to the interval [0,1]

otherwise inputs with larger ranges can dominate the computation of a maximin

design, say. If the input space in the original problem is rectangular

d∏

ℓ=1

[aℓ, bℓ]

then

xℓ =
xℓ − aℓ

bℓ − aℓ
, ℓ = 1, . . . , d

is used to scale and shift the input space to [0, 1]d; the inverse transform is used to

place the computed design on the scale of the original design problem.

The first method considered in this section to measure the spread of n points in

a design is by the distance of the closest no two points in the design. To simulta-

neously define distances for both rectangular and non-rectangular input regions X
(Section 5.8); let ρ denote an arbitrary metric on X. Let D be an n-point design

consisting of distinct input sites {x1, x2, . . . , xn} with xℓ ∈ X, ℓ = 1, . . . , n. For ex-

ample, one important distance measure is pth order distance between w, x ∈ X for

p ≥ 1, which is defined by

5.4 Distance-Based Designs 133

ρp(w, x) =


d∑

j=1

|w j − x j|p


1/p

. (5.4.1)

Rectangular (“Manhattan”) and Euclidean distances are the cases p = 1 and p = 2,

respectively. Then one way to measure of the closeness of the n points in D is the

smallest distance between any two points inD, i.e.,

min
x1,x2∈D

ρp(x1, x2). (5.4.2)

A design that maximizes (5.4.2) is said to be a maximin distance design and is

denoted byDMm; thus

min
x1,x2∈DMm

ρp(x1, x2) = max
D⊂X

min
x1,x2∈D

ρp(x1, x2). (5.4.3)

In an intuitive sense, therefore, DMm designs guarantee that no two points in the

design are too close, and hence the design points are spread over X.

One criticism of the maximin principle is that it judges the goodness of a design

by the minimum among all
(

n

2

)
input vectors rather than all possible differences.

Figure 5.8 illustrates such a pair of designs both of which have minimum interpoint

distance of 0.30; the point (0.2, 0.2) in the left panel design has been moved to

(0.025, 0.025) the design in the right panel is, intuitively, more space-filling than

the design in the left panel. More careful inspection of these designs shows that

the second smallest interpoint distance is greater for for right panel design than

the left panel design. By using a more careful definition of minimaxity in which

the number of pairs of the inputs with smallest, second smallest etc distances are

accounted for, Morris and Mitchell (1995) were able to rank cases of equal minimum

interpoint distance and eliminate such anomalies. Another criterion that accounts for

the distances among all pairs of design vectors is the average of all (
(
n

2

)
) interpoint

distances will be introduced below.

In sum, despite this initial criticism, Mm designs are often visually attractive and

can be justified theoretically under certain circumstances (Johnson et al (1990)).

A second way in which points in a designDmight be regarded as spread out over

a design spaceX is for no point in X to be “too far” from a point in the designD. To

make this precise, again let ρp(·, ·) be a metric on X. Denote the distance between

an arbitrary input site x ∈ X and a designD ⊂ X by ρp(x,D), where

ρp(x,D) = min
xi∈D

ρp(x, xi) .

An n-point design DmM is defined to be minimax distance design if the maximum

distance between arbitrary points x ∈ X and the candidate design DmM is a mini-

mum over all designsD whose input vectors xℓ ∈ X, ℓ = 1, . . . , n namely

min
D

max
x∈X

ρ(x,D) = max
x∈X

ρ(x,DmM). (5.4.4)

134 5 Space-filling Designs

Another approach to spreading out points in the design space is to consider the

distribution of distances between all pairs of input vectors and not merely the dis-

tance between the closest pair of input vectors. One example of such an approach

minimizes the “average” of the reciprocals of the distances between pairs of design

points. To describe the details of this proposal, it convenient to again let D be an

arbitrary n-point design consisting of distinct input sites {x1, x2, . . . , xn} from a rect-

angular or non-rectangular input region X. Define the average reciprocal distance

(ARD) among inputs inD to be

m(p,λ)(D) =


1(
n

2

)
∑

xi,x j∈D

[
1

ρp(xi, x j)

]λ

1/λ

, λ ≥ 1 . (5.4.5)

The combinatorial coefficient
(

n

2

)
is the number of different pairs of points that can

be drawn from a total of n distinct objects. For example, when λ = 1, the criterion

function m(p,1)(D) is inversely proportional to the harmonic mean of the distances

between design points.

For fixed (p, λ), an n × d designDav is a minimal ARD (mARD) design if

m(p,λ)(Dav) = min
D⊂X

m(p,λ)(D) . (5.4.6)

The optimality condition (5.4.6) favors designs that possess nonredundancy in the

location of input sites; specifically the criterion does not allow design points xi and

x j that are (simultaneously) the same in all coordinates, i.e., with xi = x j. When λ =

1, the optimality condition (5.4.6) selects designs which maximize this harmonic

mean, of course, preventing any “clumping” of design points. The nonredundancy

requirement can be seen even more clearly for large values of λ. Taking λ→ ∞, the

criterion function (5.4.5) becomes

m(p,∞)(D) = max
xi ,x j∈D

1

ρp(ti, t j)
. (5.4.7)

Minimizing the right hand side of (5.4.7) is equivalent to maximizing (5.4.2). Thus,

an n-point designDMm satisfying condition (5.4.6) for λ = ∞, namely,

m(p,∞)(DMm) = min
D⊂X

m(p,∞)(D) ,

is, in fact, a maximin distance design as defined previously because this criterion is

equivalent to maximizing the minimum distance between all pairs of design points,

max
D⊂X

min
ti ,t j∈D

ρp(ti, t j) ∝
1

m(p,∞)(DMm)
.

Before considering an example, we note several computational strategies that

have been used to find optimal space-filling designs. Mm designs can be computed

by solving the mathematical programming problem

5.4 Distance-Based Designs 135

max z

subject to

z ≤ ρp(xi, x j), 1 ≤ i < j ≤ n (5.4.8)

0d ≤ xℓ ≤ 1d, 1 ≤ ℓ ≤ n

in which an addition decision variable z has been added to the unknown x1, . . . , xn;

z is a lower bound for all distances in (5.4.8). While this problem can be solved

by standard non-linear programming algorithms for “small” n, the computational

difficulty with this approach is the number of constraints on z grows on the order of

n2 (see Stinstra et al (2003)).

Do we want to show the geometry of the Mm and mM designs? other meth-

ods for finding Mm, mM, mARD designs?

Example 5.8. Figure 5.6 displays Minimum ARD designs with Euclidean distance

(p = 2) for λ = 1 and λ = ∞ when n = 6 and d = 2; by (5.4.7) the latter design

is Mm design for this Euclidean distance case. Both designs concentrate points on

or near the boundary of X so that the projections of the design points onto either

axis produces multiple observations in 1-d. If the output depends primarily on one

of the inputs, say x1, this means that such a design will not fully explore x1 space.

We can remedy this feature of the design by restricting the class of available designs

to only include, say, LHDs. This provides a computationally-convenient method of

generating space-filling designs for computer experiments. Figure 5.2 is an example

of a mARD within the class of LHDs for p = 1 and λ = 1. The use of multiple

criteria to select designs is discussed further below. �

As noted above, neither the Mm nor the mARD optimal designs need not have

projections that are nonredundant. To reiterate, consider a computer experiment in-

volving d = 5 input variables, only three of which (say) are active. In this event, a

desirable property of an optimal n × 5 design is nonredundancy of input sites pro-

jected onto the three-dimensional subspace of the active inputs. Such designs can be

generated by computing the criterion values (5.4.5) for each relevant projection of

the full designD and averaging these to form a new criterion function which is then

minimized by choice of designD. The approach is implemented by the Algorithms

for the Construction of Experimental Designs (ACED) software of Welch (1985),

among other packages. The Welch (1985) software was used to compute the optimal

designs of this section.

Formally, the projection approach sketched in the previous paragraph can be de-

scribed as follows. Let J denote the index set of subspace dimensions in which

nonredundancy of input sites is desired. For each j ∈ J, let {S k j} denote the kth

design in an enumeration of all j-dimensional projections of D for k = 1, . . . ,
(
n

j

)
,

where
(

n

j

)
= n!/(j!(n− j)!) is the number of subsets of size j that can be drawn from

n distinct objects. Because the maximum distance apart that points can lie depends

136 5 Space-filling Designs

Fig. 5.6 Minimum ARD designs with respect to Euclidean distance (p = 2) for λ = 1.0 (left panel)

and for λ = ∞ (right panel)

on the dimension of the space, it is essential that the ρp(·, ·) of points in j-d be nor-

malized by this maximum distance of j1/p in order for distances to be comparable

across different dimensional space.

For k = 1, . . . ,
(
n

2

)
and j ∈ J define the minimum distance for the projected design

Dk j to be

min
x
⋆
h
,x⋆
ℓ
∈Dk j

ρp(x⋆
h
, x⋆

ℓ
)

j1/p
(5.4.9)

and the average reciprocal distance forDk j to be the (modified) (5.4.5),

mJ,(p,λ)(Dk j) =


1(
n

2

)
∑

x⋆
h
,x⋆
ℓ
∈Dk j

[
j1/p

ρp(x⋆
h
, x⋆

ℓ
)

]λ

1/λ

. (5.4.10)

Here, x⋆
i

denotes the projection of xi into the appropriate subspace determined by

the values of j and k. Define the J-minimum of inputs in the designD to be

ρJ(x,D) = min
j∈J

min
k∈{1,...,(n

j)}
min

x
⋆
h
,x⋆
ℓ
∈Dk j

ρp(x⋆
h
, x⋆

ℓ
)

j1/p
(5.4.11)

and the J-average reciprocal projection design criterion function to be,

5.4 Distance-Based Designs 137

avJ,(p,λ)(D) =


1(

n

2

)
×∑

j∈J

(
n

j

)
∑

j∈J

(n
j)∑

k=1

∑

x∗
h
,x∗
ℓ
∈Dk j

[
j1/p

ρp(x⋆
h
, x⋆

ℓ
)

]λ


1/λ

=


1

∑
j∈J

(
n

j

)
∑

j∈J

(n
j)∑

k=1

[mJ,(p,λ)(Dk j)]
λ



1/λ

.

(5.4.12)

An n-point design DMmP is maximum with respect the projection criterion (??)

provided

ρJ(x,DMmP) = max
D

ρJ(x,D) (5.4.13)

and isDavp is minimal ARD with respect to the projection criterion (5.4.12) if

avJ,(p,λ)(Davp) = min
D⊂X

avJ,(p,λ)(D) . (5.4.14)

Fig. 5.7 Left panel: a 3-d plot of a n = 10 point optimal mARD design within the class of LHDs

when p = λ = 1 and J = {2, 3}. Right panel: projection of left panel design onto x1-x2 plane.

Example 5.9. The optimal average projection designs (5.4.14) will also be space-

filling if the class of available designs is restricted to LHDs. As an example, let

n = 10 and d = 3. An optimal mARD design in the class of LHDs was generated

with the specifications p = λ = 1 and J = {2, 3}. Figure 5.7 presents the design 3-d

and the projection of the design onto the (x2, x3) subspace. Note that 1 < J, as LHDs

are nonredundant in each one-dimensional subspace by definition. �

138 5 Space-filling Designs

Mm and mARD designs with specified projection dimensions J are alternatives

to randomly LHDs and randomized orthogonal arrays for producing designs that are

space-filling and are (reasonably) uniformly spread out when projected onto certain

lower dimensional subspaces. Unlike randomized orthogonal arrays that only exist

for certain values of n, these designs can be generated for any sample size.

??

5.5 Distance-based Designs for Non-rectangular Regions

Section 5.2-5.4 described several criteria for constructing space-filling designs when

the input region is a hyper-rectangular. This section describes how maximin distance

(Mm) and the minimum ARD (mARD) criteria from Section 5.4 have been applied

to non-rectangular input regions.

As the following example illustrates, non-rectangular input regions occur natu-

rally in many applications where the range of one or more inputs is related to that

of others. Hayeck (2009) studied the effects of four variables, one a biomechani-

cal engineering design input (x1) and three environmental inputs (x2 − x4), on the

functioning of a total elbow prosthesis. The biomechanical input was the tip dis-

placement (in mm), and the environmental inputs were the rotation of the implant

axis about the lateral axis at the tip, the rotation of the implant axis about the ante-

rior axis at the tip, and the rotation about the implant axis (all in degrees, denoted
◦). The following constraints were imposed on the inputs based on anatomical con-

siderations
0 ≤ x1 ≤ 10

−10 ≤ 5x2 + 2x3 ≤ 10

−10 ≤ −5x2 + 2x3 ≤ 10

−15 ≤ x4 ≤ 15.

(5.5.1)

These constraints state, among things, that the maximum tip displacement is 10 mm

relative to some coordinate system; the rotation of the implant axis is 10◦ about

lateral axis at the tip and 4◦ about anterior axis at the tip; and the rotation about the

implant axis is ±15◦. The outputs of the computational simulation where various

stresses and strains in the elbow.

The bulk of this section restricts attention to input regions that are bounded poly-

topes, i.e., have the form

{x ∈ IRd Ax ≤ b} (5.5.2)

for given A and b. The Hayeck (2009) input region (5.5.1) satisfies (5.5.2) for

5.7 Non-rectangular Regions 139

A =



+1 0 0 0

−1 0 0 0

0 +5 +2 0

0 −5 +2 0

0 +5 −2 0

0 0 0 +1

0 0 0 −1



and

b = (10, 0, 10, 10, 10, 10, 15, 15)⊤ .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5.8 Two designs on [0, 1]2 with the same minimum interpoint distance of 0.30.

Recall that a design DMm is Mm provided it satisfies (5.4.3) while a design Dav

is mARD provided it satisfies (5.4.6). The class of designs used in the maximization

in (5.4.6) are thoseD having rows xi = (xi1, . . . , xid)⊤, i = 1, . . .n, belonging to the

desired input region. For example, when the input region is the bounded polytope

(5.5.2), then

D =



x⊤
1
...

x⊤n



where Axi ≤ b, for i = 1, . . . , n.

As noted in Section 5.4, there are several practical and philosophical difficulties

associated with the computation and use of maximin designs. First, because inputs

with different scales can cause the computation of a maximin designed to be dom-

inated by those inputs having larger ranges, the determination of a maximin design

for a non-rectangular input region is performed for the problem in which each in-

put has been scaled and shifted to the interval [0,1]. For example, for the bounded

input region (5.5.2), the maximum of input x j can be obtained by solving the linear

program

max x j subject to Ax ≤ b .

140 5 Space-filling Designs

Second, maximin designs need not have “space-filling” projections onto subsets of

the input variables although using the J maximin criterion and selecting designs

from the class of LHDs can eliminate this problem.

First consider the construction of maximin designs for the case of inputs that sat-

isfy (5.5.2). The mathematical program (5.4.8) for the Mm design can be modified

to that of solving

max z

subject to

z ≤ ρ2(xi, x j), 1 ≤ i < j ≤ n (5.5.3)

Axℓ ≤ b, 1 ≤ ℓ ≤ n

in which the [0,1] bounds for each input are replaced by the bounded polytope con-

straints. Other constraints on the xℓ can be handled similarly.

Trosset (1999)) described an approximate solution to the problem of finding a

Mm design. He replaced ρp(·, ·) in (??) by a decreasing function of ρp(·, ·), e.g.,

φ(w) = 1/w which changes the minimum in (??) to

max
i< j

φ(ρp(xi, x j)) (5.5.4)

and then replaces the maximization in (??) with that of minimizing


∑

i< j

φ(ρ2(xi, x j))
λ



1/λ

. (5.5.5)

For large λ, a design that minimizes (5.5.5) subject to Ax ≤ b is an approximate

Mm design because (5.5.5) converges to (5.5.4) as λ→ ∞.

Stinstra et al (2003) introduced an algorithm that allows larger problems (5.5.3)

to be solved. Their algorithm solves a set of n subproblems to update a current

feasible point (xc
1
, . . . , xc

n) satisfying the constraints (5.5.3) to an improved solution.

The update step to find xc+1
i

from xc
i

when components with ℓ < i have been updated

and those with ℓ > i have not been updated is

max w

subect to

w ≤ ρ2(xi, xc+1
ℓ

), ℓ < i (5.5.6)

w ≤ ρ2(xi, xc
ℓ
), ℓ > i

Ax ≤ b

for (w⋆, x⋆
i

). Set xc+1
i
= x⋆

i
. This cycle of n steps is repeated until a given minimum

improvement in (??) occurs or a computational budget is exhausted.

As for rectangular input regions, Draguljić et al (2012) added criteria to that

of maximinity which a design is required to satisfy. First, the consider “non-

5.5 Quasi-Random Sequences 141

collapsingness” which can be thought of as an attempt to provide a space-filling

design in each input and is thus similar in spirit to that of the LHD criterion. Be-

yond non-collapsingness, they considered adding either maximin or a maximum

average distance criterion for the design.

5.6 Designs Obtained from Quasi-Random Sequences

Quasi-random sequences are intended to produce finite sequences of points that fill

the d-dimensional unit hypercube uniformly with the property that a design with

sample size n is obtained from the design of sample size n − 1 by adding a point

to the design. Although introduced for numerically evaluating multi-dimensional

integrals, they also allow one to generate space-filling designs.

Several such sequences have been proposed, including Halton sequences (Hal-

ton (1960)) Sobol´ sequences, (Sobol´ (1967) and Sobol´ (1976)) and Niederreiter

sequences (Niederreite (1988)).

To construct a Halton sequence {x1, x2, . . . , xn} of n points on the d-dimensional

unit hypercube, begin by choosing d prime numbers, or bases, b1, b2, . . . , bd. These

could be, for example, the first d prime numbers. The base b j will be used to con-

struct the j − th coordinates of the {xi.

Next, select an integer m. Next, for suitably large tm j (the highest power of b j

used in the representation of m in base b j), represent the integer m in base b j as

m =

tm j∑

k=0

a jk(m)bk
j, j = 1, . . . , d. (5.6.1)

Next, form

x1 j =

tm j∑

k=0

a j,k−tm j−1(m)b
k−tm j−1

j
, j = 1, . . . , d. (5.6.2)

Note that in forming x1 j we have simply reversed the digits in the representation

of m in base b j and placed these reversed digits after a decimal point.

Set m = m + i − 1 and repeat the above to form the xi j.

Example 5.10. We compute the first five points in a 2-dimensional Halton sequence.

We use bases b1 = 2 and b2 = 3. We begin with m = 4. In base 2, 4 is 100 and in base

3 11. Reversing the digits and adding a decimal point, x1 = (.0012, .113), where the

subscript indicates the base. Converting to base 10, .0012 = 0×2−1+0×2−2+1×2−3 =

1/8 = 0.125 and .113 = 1× 3−1 + 1 × 3−2 = 1/3+ 1/9 = 0.444. Thus, the first point

in our Halton sequence is x1 = (.125, .444).

Next, we increasem by 1 to 5. In base 2, 5 is 101 and in base 3 12. Reversing

the digits and adding a decimal point, btx2 = (.1012, .213). Converting to base 10,

.1012 = 1 × 2−1 + 0 × 2−2 + 1 × 2−3 = 1/2 + 1/8 = 0.625 and .213 = 2 × 3−1 +

142 5 Space-filling Designs

1 × 3−2 = 2/3 + 1/9 = 0.7784. Thus, the second point in our Halton sequence is

btx2 = (.625, .778).

The next 3 points correspond to m = 6, 7, 8. In base 2, these are 110, 111, and

1000. In base 3, these are 20, 21, and 22. Reversing digits and adding a deci-

mal point, btx3 = (.0112, .023), btx4 = (.1112, .123), and btx5 = (.00012, .223).

Converting to base 10, one finds x3 = (.375, .222), btx4 = (.875, .556), and

x5 = (.0625, .8889). Figure 5.9 shows the resulting 5-point design.

Fig. 5.9 5 point, d = 2 variable Halton sequence.

Halton sequences are relatively easy to calculate and have been found to be ac-

ceptably uniform for lower dimensions (d up to about 10). For higher dimensions

the quality degrades rapidly because two-dimensional planes occur in cycles with

decreasing periods.

Methods for creating sequences that behave better (appear uniform even in higher

dimensions) have been developed by Sobol´ and Niederreiter.

To introduce the construction of the Sobol′ sequence consider working in one-

dimension. To generate a sequence of values x1, x2... with 0 < xi < 1, first we need

to construct a set of direction numbers v1, v2, Each vi is a binary fraction that can

be written vi =
mi

2i , where mi is an odd integer such that 0 < mi < 2i.

To obtain mi the construction starts by choosing a primitive polynomial in the

field Z2, i.e. one may choose P = xu + a1xu−1 + ...+ au−1x+ 1 where each ai is 0 or 1

and P is an arbitrary chosen primitive polynomial of degree u in Z2. Then, the mi’s

can be calculated recurrently as

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ ... ⊕ 2u−1au−1mi−u+1 ⊕ 2umi−u ⊕ mi−u

where each term is expressed in base 2 and ⊕ denotes a bit-by-bit exclusive-or op-

eration, i.e

0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

5.5 Quasi-Random Sequences 143

When using a primitive polynomial of degree d, the initial values m1, ...,mu can

be arbitrarily chosen provided that each mi is odd and mi < 2i, i = 1, ..., u.

Example 5.11. If we choose the primitive polynomial x3+ x+1 and the initial values

m1 = 1, m2 = 3, m3 = 7, mi’s are calculated as follows:

mi = 4mi−2 ⊕ 8mi−3 ⊕ mi−3.

Then

m4 = 12⊕ 8⊕ 1 = 1100⊕ 1000⊕ 0001 = 0101 = 0× 23 + 1× 22 + 0× 2+ 1× 20 = 5

m5 = 28 ⊕ 24 ⊕ 3 = 11100 ⊕ 11000 ⊕ 00011 = 00111 = 7

m6 = 20 ⊕ 56 ⊕ 7 = 010100 ⊕ 111000⊕ 000111 = 43

and

v1 =
m1

21 =
1
21 = 0.1 in binary

v2 =
m2

22 =
3
22 = 0.11 in binary

v3 =
m3

23 =
7
23 = 0.111 in binary

v4 =
m4

24 =
5
24 = 0.0101 in binary, and so on.

In order to generate the sequence x1, x2, ..., Sobol′ proposed using

xi = b1v1 ⊕ b2v2 ⊕ · · ·

and

xi+1 = xi ⊕ vc

where · · · b3b2b1 is the binary representation of i and bc is the rightmost zero-bit in

the binary representation of i.

The first few values of x are thus generated as follows. To start the recurrence,

take x0 = 0.

144 5 Space-filling Designs

Initialization : x0 = 0

i = 0 in binary so

c = 1

S tep 1 : x1 = x0 ⊕ v1

= 0.0 ⊕ 0.1 in binary

= 0.1 in binary

=
1

2
i = 01 in binary so

c = 2

S tep 2 : x2 = x1 ⊕ v2

= 0.10 ⊕ 0.11 in binary

= 0.01 in binary

=
1

4
i = 10 in binary so

c = 1

S tep 3 : x3 = x2 ⊕ v1

= 0.01 ⊕ 0.10 in binary

= 0.11 in binary

=
3

4
i = 011 in binary so

c = 3

and so on.

To generalize this procedure to s dimensions, Sobol´ (1976) shows that in order

to obtain O(logs n) discrepancy, where n represents the number of points, it suffices

to choose s distinct primitive polynomials, calculate s sets of direction numbers and

then generate each component xi j of the quasi-random vector separately.

The uniformity of a Sobol´ sequence can be very sensitive to the starting values,

especially in higher dimensions. Various criteria exist for starting values, m1,m2, . . .

to improve uniformity.

Example 5.12. In Section 3.3, Sobol´ sequences were used to select the values of

the environmental variables and compared to other methods. The left-hand panel

of Figure 5.10 displays one of the six, two-dimensional projections of the 40 point

Sobol´ sequence in d = 4 variables that were used as inputs to generate the fire

containment data displayed in Figure 1.2. Example 3.8 also uses this 40 point data

5.5 Quasi-Random Sequences 145

Heat Loss Fraction

R
oo

m
 A

re
a

(s
q.

 ft
)

0.60 0.65 0.70 0.75 0.80 0.85 0.90

10
0

15
0

20
0

25
0

Heat Loss Fraction

R
oo

m
 A

re
a

(s
q.

 ft
.)

0.60 0.65 0.70 0.75 0.80 0.85 0.90

10
0

15
0

20
0

25
0

Fig. 5.10 Left Panel—projection of the 40 point, d = 4 variable Sobol´ sequence described in

Section 1.3 onto the room area × heat loss fraction plane; Right Panel—projection of the 40 point

maximin LHD for the same four variables into the room area × heat loss fraction plane.

set. The corresponding two-dimensional projection for the 40 point maximin LHD

is shown in the right-hand panel of the same figure. It is clear from Figure 5.10

that the LHD is more evenly spread out than the design based the Sobol´ sequence.

Thus, if it is important that the design be evenly spread out, the LHD appears to be

preferable. On the other hand, the design based on the Sobol´ sequence appears to

exhibit a greater variety of inter-point distances (distances between pairs of points

in the design) than the LHD. If a greater variety of inter-point distances provides

more information about the correlation parameters (and hence allows one to better

estimate these parameters), then designs based on a Sobol´ sequence (or other types

of sequences that have been used in numerical integration) may be preferable to the

LHD. �

Niederreite (1988) proposed a new method of generating quasi-Monte Carlo se-

quences intended to improve on Sobol´ sequences. Let △(N) denote n×D∗n, where D∗n
is the star discrepancy. It is believed that the best possible bound for the discrepancy

of the first n terms of a sequence of points in [0, 1)s is of the form

△(n) ≤ Cs(log n)s + O((log n)s−1)

for all n ≥ 2. The methods proposed by Niederreiter yield sequences with the lowest

Cs currently known.

We will not discuss the construction of Niederreiter sequences, but details can be

found in, for example, Lemieux (2009).

146 5 Space-filling Designs

Code exists for generating these sequences and a Google search online will iden-

tify several sources. R code exists for generating Sobol´ sequences. To obtain and

use this code, do the following.

• Open R

• Use Package Installer and Package Manager (under the Packages&Data menu)

to make sure that fBasics, fCalendar, fExtremes, fMultivar, fOptions, fPortfolio,

and fSeries are installed and loaded.

• Use the runif.sobol command. To see how to use this, click on the fOptions pack-

age in the R Package Manager window and then on the runif.sobol link.

The basic format is

> runif.sobol([number of runs], [number of variables or dimensions])

but additional options are available.

Halton sequences in d dimensions can be generated in Matlab using the p =

haltonset(d) command.

Sobol´ sequences in d dimensions can be generated in Matlab using the p =

sobolset(d) command.

Both commands yield a very large sequence of points.

Both commands are available in the Statistics toolbox. See the Help menu in

Matlab for more information.

One can also find online Matlab code for generating Niederreiter sequences. For

example, see

people.sc.fsu.edu/∼ burkardt/m src/niederreiter2/niederreiter2.html.

As mentioned previously, Halton, Sobol´, and Niederreiter sequences have the

useful property that a longer sequence can be constructed from a shorter one by

adding points to the shorter sequence. This is in contrast to LHDs, where except

for special cases, the entire design must be recomputed if a LHD containing more

points is desired. More research is needed to determine what features of a design are

important for estimating the correlation parameters in our models. This question is

very difficult to answer analytically, and extensive empirical studies would be useful

for better understanding what sorts of designs perform well and for which models.

??

5.7 Uniform Designs

In Section 5.2 we considered criteria for selecting a space-filling design based on

sampling methods and, in Section 5.4, criteria based on distances between points. In

this section, we consider a third intuitive design principle based on comparing the

distribution of the points in a design to the uniform distribution.

As in Subsection 5.2.3, suppose that the vector of inputs is d-dimensional and

denoted by x = (x1, . . . , xd). Also again assume that x must fall in the d-dimensional

hyper-rectangleX = Xd
i=1[ai, bi]. LetD = {x1, x2, . . . , xn} denote the set of n points

at which we will observe the response y(x). If we wish to emphasize that x is a

5.6 Uniform Designs 147

random variable, we will use the notation X. This would be the case, for example,

if we are interested in E{y(X)}. Below we take X ∼ F(·) where

F(x) =

d∏

i=1

(
xi − ai

bi − ai

)
(5.7.1)

is the uniform distribution onX (other choices of distribution function are possible).

Fang et al (2000) and Fang et al (2005) discuss the notion of the discrepancy of a

designD, which measures the extent to whichD differs from a completely uniform

distribution of points. To be specific, let Fn be the empirical distribution function of

the points inD, namely

Fn(x) =
1

n

n∑

i=1

I {Xi ≤ x} , (5.7.2)

where I{E} is the indicator function of the event E and the inequality is with respect

to the componentwise ordering of vectors in IRd. The L∞ discrepancy, sometimes

called star discrepancy or simply discrepancy, is denoted D∞(D) and is defined as

D∞(D) = sup
x∈X
| Fn(x) − F(x) | . (5.7.3)

This is perhaps the most popular measure of discrepancy and is the

Kolmogorov-Smirnov statistic for testing fit to the uniform distribution.

Example 5.13. Suppose d = 1 andX = [0, 1] is the unit interval. It is not too difficult

to show that the n point set

D =
{

1

2n
,

3

2n
, . . . ,

2n − 1

2n

}

has discrepancy D∞(D) = 1/2n because F(x) = x in this case. �

Another important measure of discrepancy is the Lp discrepancy of D which is

denoted by Dp(D) and defined by

Dp(D) =

[∫

X
|Fn(x) − F(x)|p dx

]1/p

. (5.7.4)

The L∞ discrepancy ofD is a limiting case of Lp discrepancy obtained by letting p

go to infinity.

Niederreiter (1992) discusses the use of discrepancy for generating uniformly

distributed sequences of points in the context of quasi-Monte Carlo methods. De-

signs taking observations at sets of points with small discrepancies would be consid-

ered more uniform or more spread out than designs corresponding to sets with larger

discrepancies. Uniform designs take observations at a set of points that minimizes

Dp.

Other than the fact that it seems intuitively reasonable to use designs that are

spread uniformly overX, why might one consider using a uniform design? One rea-

148 5 Space-filling Designs

son that has been proposed is the following. Suppose we are interested in estimating

the mean of g(y(X)),

µ = E{g(y(X))} =
∫

X
g(y(x))

1
∏d

i=1(bi − ai)
dx,

where g(·) is some known function. We consider the properties of the naı́ve moment

estimator

T = T (y(X1), . . . , y(Xn)) =
1

n

n∑

j=1

g(y(X j)).

The Koksma-Hlawka inequality (Niederreiter (1992)) gives an upper bound on the

absolute error of this estimator, namely

| T (y(x1), . . . , y(xn)) − µ |≤ D∞(D)V(g),

where V(g) is a measure of the variation of g that does not depend on D (see page

19 of Niederreiter (1992) for the definition of V(g)). For fixed g(·), this bound is a

minimum when D has minimum discrepancy. This suggests that a uniform design

may control the maximum absolute error of T as an estimator of µ. Also, because

this holds for any g(·), it suggests that uniform designs may be robust to the choice

of g(·) because they have this property regardless of the value of g(·).

However, just because an upper bound on the absolute error is minimized, it does

not necessarily follow that a uniform design minimizes the maximum absolute error

over X or has other desirable properties. Furthermore, in the context of computer

experiments, we are usually not interested in estimating µ. Thus, the above is not a

completely compelling reason to use a uniform design in computer experiments as

discussed here.

Wiens (1991) provides another reason for considering uniform designs. Suppose

we believe the response y(x) follows the regression model

y(x) = β0 +

k∑

i=1

βi fi(x) + ϕ(x) + ǫ,

where the { fi} are known functions, the βi unknown regression parameters, ϕ is

an unknown function representing model bias, and ǫ normal random error. Wiens

(1991) shows that under certain conditions on ϕ, the uniform design is best in the

sense of maximizing the power of the overall F test of the regression.

Fang et al (2000) provide yet another reason why one may wish to use uniform

designs. They note that in orthogonal designs, the points are typically uniformly

spread out over the design space. Thus, there is the possibility that uniform designs

may often be orthogonal. To explore this further, they use computer algorithms to

find designs that minimize a variety of measures of discrepancy and in doing so

generate a number of orthogonal designs. Efficient algorithms for generating designs

that minimize certain measures of discrepancy, therefore, may be useful in searching

for orthogonal designs.

5.6 Uniform Designs 149

Fang et al (2000) discuss a method for constructing (nearly) uniform designs. For

simplicity, assume X is [0, 1]d. In general, finding a uniform design is not easy. One

way to simplify the problem is to reduce the domain of X. Obviously, a uniform

design over this reduced domain may not be close to uniform over X, but suitable

selection of a reduced domain may yield designs which are nearly uniform. Based

on the uniform design for d = 1, we might proceed as follows. Let Π = (Πi j) be an

n×d matrix such that each column ofΠ is a permutation of the integers {1, 2, . . . , n}.
Let X(Π) = (xi j) be the n × d matrix defined by

xi j = (Πi j − 0.5)/n

for all i, j. The n rows of X define n points in X = [0, 1]d. Hence, each matrix Π

determines an n point design. For example, when d = 1, if Π = (1, 2, . . . , n)⊤, then

X(Π) =

(
1

2n
,

3

2n
, . . . ,

2n − 1

2n

)⊤
,

which is the uniform design in d = 1 dimension. Note that the n rows of X(Π) cor-

respond to the sample points of an LHD with points at the centers of each sampled

cell. One might search over the set P of all possible permutations Π , selecting the

Π that produces the n point design with minimum discrepancy. One would hope

that this choice of design is nearly uniform over X. Fang et al (2000) describe two

algorithms for conducting such a search (see Section 5 of their paper). Bratley et al

(1994) is an additional source for an algorithm that can be used to generate low-

discrepancy sequences of points and hence (near) uniform designs.

The discrepancies D∞ for two designs that appear to be equally uniform may not

be the same. The following example illustrates such a case.

Example 5.14. Suppose d = 2, X = [0, 1]2, and consider the class of all designs

generated by the set of permutations P introduced in the previous paragraph. One

member of this class of designs is

Ddiag =

{(
1

2n
,

1

2n

)
,

(
3

2n
,

3

2n

)
, . . . ,

(
2n − 1

2n
,

2n − 1

2n

)}
.

This n point design takes observations along the diagonal extending from the origin

to the point (1, 1). Intuitively, we would expect Ddiag to be a poor design, because

it takes observations only along the diagonal and does not spread observations over

[0, 1]2. To compute the discrepancy of Ddiag, we first compute the empirical dis-

tribution function Fn for Ddiag at an arbitrary point x = (x1, x2) in [0, 1]2. Notice

that points in Ddiag have both coordinates equal and it is not too hard to show from

Equation (??) that

Fn(x1, x2) =
number of pts. inDdiag with first coordinate ≤ min{x1, x2}

n
.

150 5 Space-filling Designs

Notice that Fn(·, ·) is constant almost everywhere except for jumps of size 1/n at

points for which one of the coordinates takes one of the values 1
2n
, 3

2n
, . . . , 2n−1

2n
. In

particular, Fn(x1, x2) has value m
n

(1 ≤ m ≤ n) on the set Xm:

{
(x1, x2) ∈ [0, 1]2 :

2m − 1

2n
≤ min{x1, x2} <

2m + 1

2n

}
.

Recall from (??) that F(·) is the uniform distribution

F(x) = x1 x2

on X = [0, 1]2. On Xm, the minimum value of F(x) is
(

2m−1
2n

)2
and the supremum of

F(x) is 2m+1
2n

. This supremum is obtained in the limit as ǫ → 0 along the sequence

of points
(

2m+1
2n
− ǫ, 1

)
. Thus, over Xm, the supremum of |Fn(x) − F(x)| is either∣∣∣∣m

n
−

(
2m−1

2n

)2
∣∣∣∣ or

∣∣∣m
n
− 2m+1

2n

∣∣∣ = 1
2n

. For 1 ≤ m ≤ n, it is not difficult to show that

∣∣∣∣∣∣∣
m

n
−

(
2m − 1

2n

)2
∣∣∣∣∣∣∣
>

1

2n
.

Hence, over the set of all points x for which Fn(x) has value m
n

, the supremum of

|Fn(x) − F(x)| is
m

n
−

(
2m − 1

2n

)2

=
nm − m2 + m

n2
− 1

4n2
,

and this occurs at the point (2m−1
2n

, 2m−1
2n

) ∈ Ddiag. Using calculus, one can show that

the value of m that maximizes nm−m2+m
n2 − 1

4n2 is n+1
2

if n is odd, and n
2

if n is even. If

n is odd, one gets

D∞(Ddiag) = sup
{x∈X}
|Fn(x) − F(x)| = 1

4
+

1

2n

and if n is even,

D∞(Ddiag) =
1

4
+

1

2n
− 1

4n2
.

However, notice that when n is odd, any design corresponding to a permutation

in P and taking n+1
2

of its observations at points which are less than or equal to

(1/2, 1/2) (under componentwise ordering of vectors) will have support on a set

with a discrepancy that is greater than or equal to that of Ddiag. To see this, simply

notice this discrepancy must be at least equal to the value of |Fn(x) − F(x)| at x =

(1/2, 1/2), which is equal to D∞(Ddiag). Likewise, if n is even, any design taking

half of its observations at points less than or equal to
(

n−1
2n
, n−1

2n

)
will have support

on a set with a discrepancy that is greater than or equal to that ofDdiag. Thus,Ddiag

is more uniform than any such design, even if such a design spreads points more

evenly over [0, 1]2 than simply placing them along the diagonal.

5.8 Chapter Notes 151

Now consider the n point design,

Dantidiag =

{(
1

2n
,

2n − 1

2n

)
,

(
3

2n
,

2n − 3

2n

)
, . . . ,

(
2n − 1

2n
,

1

2n

)}
.

This design takes observations along the antidiagonal that runs from the point (0, 1)

to the point (1, 0). For this design, we notice that when n is odd, Fn(x) = 0 at

x =
(

1
2
− ǫ, n+2

2n
− ǫ

)
and so, at this x,

|Fn(x) − F(x)| =
(

1

2
− ǫ

) (
n + 2

2n
− ǫ

)
.

In the limit as ǫ → 0,

|Fn(x) − F(x)| → 1

4
+

1

2n
.

One can show that this is, in fact, the supremum value of |Fn(x) − F(x)| forDantidiag,

hence its discrepancy is D∞(Dantidiag) = 1
4
+ 1

2n
. Notice that 1

4
+ 1

2n
is also the value

of D∞(Ddiag), so D∞ considersDdiag andDantidiag equally uniform when n is odd.

When n is even, by considering the point x =
(

n+1
2n
− ǫ, n+1

2n
− ǫ

)
, one can show

that in the limit as ǫ → 0,

|Fn(x) − F(x)| → 1

4
+

1

2n
+

1

4n2
.

In this case, D∞(Dantidiag) is at least as large as 1
4
+ 1

2n
+ 1

4n2 . Notice that this quantity

is larger than the discrepancy of Ddiag when n is even, so in this case Ddiag is a

more uniform design thanDantidiag. Most readers would consider both designs to be

equally uniform. �

This example shows that discrepancy, at least as measured by D∞, may not ad-

equately reflect our intuitive notion of what it means for points to be evenly spread

overX. Other measures of discrepancy may perform better. In view of Wiens (1991),

uniform designs may be promising, but additional study of their properties in the

context of computer experiments is needed. It should be noted that in Fang et al

(2000), the design Ddiag is eliminated from consideration because only matrices Π

of rank d are considered, and the matrix Π corresponding to Ddiag is of rank 1.

Constructing uniform designs is nontrivial. The Mathematics Department of

Hong Kong Baptist University maintains a web site with information about uniform

designs, including lists of publications about uniform designs and tables of uniform

designs. The web site is located at www.math.hkbu.edu.hk/UniformDesign/.

JMP version 7 and later also generates uniform designs. JMP uses the centered

L2 discrepancy measure of Hickernell (1998). To generate uniform designs, one

must run the Space Filling Design command under the DOE menu. See the Help

menu in JMP for details.

Figure 5.11 displays a 40 point uniform design and a 40 point maximin LHD for

comparison purposes. Both were generated using the JMP software package.

152 5 Space-filling Designs

5.8 Chapter Notes

5.8.1 Proof That TL is Unbiased and of Theorem 5.1

We use the same notation as in Section 5.2.3. To compute E{TL}, we need to describe

how the LH sample is constructed. For each i, divide the range [ai, bi] of the ith co-

ordinate of X into n intervals of equal marginal probability 1
n

under F. Sample once

from each of these intervals and let these sample values be denoted Xi1, Xi2, . . . , Xin.

Form the d × n array 

X11 X12 . . . X1n

X21 X22 . . . X2n

...

Xd1 Xd2 . . . Xdn



and then randomly permute the elements in each row using independent permuta-

tions. The n columns of the resulting array are the LH sample. This is essentially the

procedure for selecting a LH sample that was discussed in Section 5.2.1. Another

way to select a LH sample is as follows. The Cartesian product of the d subintervals

[ai, bi] partitionsX into nd cells, each of probability 1/nd. Each of these nd cells can

be labeled by a set of d coordinates

mi = (mi1,mi2, . . . ,mid),

where 1 ≤ i ≤ nd and mi j is a number between 1 and n corresponding to which

of the n intervals of [a j, b j] is represented in cell i. For example, suppose n = 3,

d = 2, [a1, b1] = [a2, b2] = [0, 1], and F(·) is uniform. We divide [a1, b1] into the

three intervals [0, 1
3
), [1

3
, 2

3
), and [2

3
, 1]. Similarly for [a2, b2]. In this case the cell

[1
3
, 2

3
) × [1

3
, 2

3
) would have cell coordinates (2, 2).

To obtain a LH sample, select a random sample of n of the nd cells, say

mi1 , mi2 , . . . , min , subject to the condition that for each j, the set {miℓ j}nℓ=1
is a permu-

tation of the integers 1, 2, . . . , n. We then randomly select a single point from each

of these n cells. For a LH sample obtained in this manner, the density of X, given

X ∈ cell i, is

f (x | X ∈ cell i) =

{
1
nd f (x) if x ∈ cell i

0 otherwise.

Thus, the distribution of the output y(X) under LH sampling is

5.8 Chapter Notes 153

P(y(X) ≤ y) =

nd∑

i=1

P(y(X) ≤ y | X ∈ cell i)P(X ∈ cell i)

=

nd∑

i=1

∫

cell i and y(x) ≤ y

nd f (x)

(
1

nd

)
dx

=

∫

y(x)≤y

f (x)dx,

which is the same as for random sampling. Hence we have E{TL} = µ.

To compute Var{TL}, we view our sampling as follows. First we select the Xi

independently and randomly according to the distribution of F from each of the nd

cells. We next independently select our sample of n cells as described above, letting

Wi =

{
1 if cell i is in our sample

0 otherwise

and

Gi = g(y(Xi)).

Then

Var{TL} = Var


1

n

n∑

j=1

G j



=
1

n2


nd∑

i=1

Var {Wi Gi}

+

nd∑

i=1

nd∑

j=1, j,i

Cov
(
(Wi ×Gi), (W j ×G j)

)
 .

To compute the variances and covariance on the right-hand side of this expres-

sion, we need to know some additional properties of the Wi. Using the fundamental

rule that the probability of an event is the proportion of samples in which the event

occurs, we find the following. First, P(Wi = 1) = n/nd = 1/nd−1 so Wi is Bernoulli

with probability of success 1/nd−1. Second, if Wi and W j correspond to cells having

at least one common cell coordinate, then these two cells cannot both be selected,

hence E{(WiW j)} = 0. Third, if Wi and W j correspond to cells having no cell coor-

dinates in common, then

E{Wi ×W j} = P{Wi = 1,W j = 1} = 1

nd−1(n − 1)d−1
.

This follows from the fact that, taking order into account, there are nd(n − 1)d pairs

of cells with no coordinates in common and in our sample of size n, there are n(n−1)

such pairs.

154 5 Space-filling Designs

Using the fact that for two random variables Z and V ,

Var {Z} = E{Var{Z | V}} + Var {E{Z | V}}, we have

Var {Wi ×Gi} = E{Var {Wi Gi | Wi}} + Var {E{Wi Gi | Wi}}
= E{W2

i Var {Gi | Wi}} + Var {WiE{Gi | Wi}}
= E{W2

i Var {Gi} + Var {Wi E{Gi}} (5.8.1)

= E{W2
i }Var {Gi} + E2{Gi}Var{Wi},

where in (5.8.1) above we use the fact that Xi (and hence Gi) and Wi are independent.

Letting

µi = E{g(y(Xi))} = E{g(y(X)) | X ∈ cell i}

and recalling that Wi is Bernoulli, we have

nd∑

i=1

Var {Wi Gi} =
nd∑

i=1

[
E{W2

i }Var {Gi} + E2{Gi}Var {Wi}
]

=
1

nd−1

nd∑

i=1

[
E{Gi − µi}2

+
1

nd−1
(1 − 1

nd−1
)µ2

i

]

=
1

nd−1

nd∑

i=1

[∫

cell i

(g(y(x))) − µ + µ − µi)
2 nd f (x)dx

+
1

nd−1
(1 − 1

nd−1
)µ2

i

]

= n Var {y(X)} − 1

nd−1

nd∑

i=1

[
(µ − µi)

2 +
1

nd−1
(1 − 1

nd−1
)µ2

i

]
.

Because Wℓ and Gℓ = g(y((Xℓ))) are independent, then for i , j,

Cov
(
(Wi ×Gi), (W j ×G j)

)
= E{Wi Gi W j G j}

−E {Wi Gi}E
{
W j G j

}

= E
{
Wi W j

}
E

{
Gi G j

}

−E {Wi} E {Gi} E
{
W j

}
E

{
G j

}

= E
{
Wi W j

}
E {Gi} E

{
G j

}

− 1

nd−1
E {Gi}

1

nd−1
E

{
G j

}

= E
{
Wi W j

}
µi µ j −

1

n2d−2
µi µ j.

5.8 Chapter Notes 155

Hence

nd∑

i=1

nd∑

j=1, j,i

Cov
(
Wi Gi,W j G j

)
=

nd∑

i=1

nd∑

j=1, j,i

[
E

{
Wi W j

}
µiµ j −

1

n2d−2
µiµ j

]
.

Recall that E{WiW j} = 0 if cells i and j have at least one common cell coordinate.

Let R denote the nd(n − 1)d pairs of cells (with regards to order) having no cell

coordinates in common. On this set we saw that

E
{
Wi W j

}
=

1

nd−1(n − 1)d−1

so we have

Var


1

n

n∑

j=1

G j


=

1

n2

n Var {g(y(X)} − 1

nd−1

nd∑

i=1

(µ − µi)
2

+
1

nd−1

(
1 − 1

nd−1

) nd∑

i=1

µ2
i

+
1

nd−1(n − 1)d−1

∑

R

µiµ j −
1

n2d−2

nd∑

i=1

nd∑

j=1, j,i

µiµ j

 .

Notice that

nd∑

i=1

µi =

nd∑

i=1

E {g(y(X)) | X ∈ cell i}

=

nd∑

i=1

∫

cell i

g(y(x))nd f (x)dx

= nd

∫

X
g(y(x)) f (x)dx = ndµ.

So

156 5 Space-filling Designs

Var


1

n

n∑

j=1

G j


=

1

n
Var {g(y(X))} − 1

nd+1

nd∑

i=1

(
µ2 − 2µiµ + µ

2
i

)

+

(
1

nd+1
− 1

n2d

) nd∑

i=1

µ2
i

+
1

nd+1(n − 1)d−1

∑

R

µiµ j

− 1

n2d

nd∑

i=1

nd∑

j=1, j,i

µiµ j

= Var {TR} +
1

n
µ2 − 1

n2d


nd∑

i=1

µi



2

+
1

nd+1(n − 1)d−1

∑

R

µiµ j

= Var {TR} −
n − 1

n
µ2

+

(
n − 1

n

) (
1

nd(n − 1)d

) 
∑

R

µiµ j



= Var {TR}

−
(

n − 1

n

) (
1

nd(n − 1)d

) 
∑

R

µ2



+

(
n − 1

n

) (
1

nd(n − 1)d

) 
∑

R

µiµ j



= Var {TR}

+

(
n − 1

n

) (
1

nd(n − 1)d

)

×
∑

R

(µi − µ)(µ j − µ) (5.8.2)

≤ Var {TR} ,

provided the last term in (5.8.2) is less than or equal to 0. Thus, whether LH sam-

pling is superior to simple random sampling depends on the sign of this term, which

in turn depends on the nature of g and f . Note also that LH sampling is superior to

stratified random sampling with proportional sampling if

(
n − 1

n

) (
1

nd(n − 1)d

)∑

R

(µi − µ)(µ j − µ) < −1

n

I∑

i=1

pi(µ − µi)
2

5.8 Chapter Notes 157

McKay et al (1979) prove that under the assumptions of Theorem ??, if (y(x1, . . . , xd)

is monotonic in each of its arguments and g(w) is a monotonic function of w), then∑
R(µi − µ)(µ j − µ) ≤ 0. This completes the proof of Theorem ??. �

5.8.2 The Use of LHDs in a Regression Setting

Owen (1992b) presents a multivariate extension of Theorem 5.3 and its application

to computer experiments when fitting a regression to output data (rather the constant

mean described in Section 5.2.3). The basis for the application is the following

multivariate version of Theorem 5.3. The setting is as follows. Suppose that X has

independent components with distribution functin F(·), y(X) = (y1(X), . . . , yk(X))⊤,

Y = 1
n

∑n
i=1 y(Xi) and µ =

∫
X y(x) dx.

Corollary 5.1. Let rℓ(x) be the residual from additivity for yℓ(x) and define

σi j =

∫

X
ri(x) r j(x) dF(x).

Let Σ be the d × d matrix whose (i, j) entry is σi j. Then
√

n(Y − µ) tends in distri-

bution to Nk(0,Σ) as n→ ∞.

Let Z(x) be a vector valued function for which a linear model Z⊤(x)β is an

appropriate approximation to Y(x). The “population” least squares value of β is

β
POP
≡

[∫

X
Z(x)ZT (x) dF(x)

]−1 ∫

X
Z(x)Y(x) dF(x).

Assuming
∫
X Z(x)Z⊤(x) dF(x) is known or easily computable (this would be the

case for polynomial regression, for example), we can estimate β
POP

by

β̂
POP
=

[∫

X
Z(x)Z⊤(x) dF(x)

]−1
1

n

n∑

i=1

Z(Xi)Y(Xi).

The variance of β̂
POP

is of the “sandwich” form

[∫

X
Z(x)Z⊤(x) dF(x)

]−1

Σ

[∫

X
Z(x)Z⊤(x) dF(x)

]−1

,

where Σ is defined in Corollary 5.1 above using the jth component of Z(x) times

Y(x) in place of Y j(x) in the definition of r j(x). Appealing to Theorem ??, one

might argue that to the extent that Z(x) Y(x) is additive, the regression may be more

accurately estimated from a LHD than from a design based on a simple random

sample.

Owen (1992b) discusses some other estimators of β
POP

. The point is that when

a linear model is likely to provide a good approximation to y(x), using a LHD fol-

158 5 Space-filling Designs

lowed by regression modeling is not an unreasonable way to conduct computer ex-

periments.

5.8.3 Other Space-Filling Designs

The methods discussed in this chapter are not the only ones that generate space-

filling designs. The literature on numerical integration contains numerous sugges-

tions for constructing evenly-spaced designs. Niederreiter (1992) contains a wealth

of information about such designs, including their mathematical properties.

One possibility is to choose points on a regularly spaced grid superimposed on

the experimental region. For example, if the experimental region is X = [0, 1]d, the

d-fold Cartesian product of the n point set

S =

{
1

2n
,

3

2n
, . . . ,

2n − 1

2n

}

would be a grid consisting of nd points. Grid designs consist of an array of evenly

spaced points, but projections onto subspaces have many replicated points.

An improvement over grids is obtained by the method of good lattice points. Such

designs are appealing in that they appear evenly spaced and in some cases have

attractive properties in numerical integration. Niederreiter (1992) discusses these

designs in more detail. Bates et al (1996) consider lattice designs in the context of

computer experiments.

Nets form another class of designs that appear space-filling and which are popu-

lar in numerical integration. See (Niederreiter (1992)) and (Owen (1995)) for more

details.

Because these designs are intended for use in numerical integration, they are

generally used in situations where a large sample size is employed. Their properties

tend to be for large numbers of observation and their small-sample behavior is not

clear (and thus their usefulness in computer experiments in which the total number

of observations is constrained to be small).

5.8 Chapter Notes 159

Fig. 5.11 Left Panel—a 40 point uniform design generated using the JMP software package; Right

Panel—a 40 point maximin LHD generated using the JMP software package.

Chapter 7

Sensitivity Analysis and Variable Screening

7.1 Introduction

This chapter discusses sensitivity analysis and the related topic of variable screen-

ing. The set-up is as follows. A vector of inputs x = (x1, . . . , xd) is given which

potentially affect a “response” function y(x) = y(x1, . . . , xd). Sensitivity analysis

(SA) seeks to quantify how variation in y(x) can be apportioned to the inputs x1,

. . . , xd and to the interactions among these inputs. Variable selection is more deci-

sion oriented in that it seeks to simply determine, for each input, whether that input

is “active” or not. However, the two notions are related and variables screening pro-

cedures use some form of SA to assess the activity of each candidate input. Hence

SA will be described first and then, using SA tools, two approaches to variable se-

lection will be presented.

To fix ideas concerning SA, consider the function

y(x1, x2) = x1 + x2. (7.1.1)

with domain (x1, x2) ∈ (0, 1) × (0, 2). One form of SA is based on examining the

local change in y(x) as x1 or x2 increases by a small amount starting from (x0
1
, x0

2
).

This change can be determined from the partial derivatives of y(·) with respect to x1

and x2; in this example,

∂y(x1x2)

∂x1

= 1 =
∂y(x1x2)

∂x2

, (7.1.2)

so that we can assert that small changes in the inputs parallel to the x1 or the x2 axes

starting from any input have the same effect on y(·).

A more global assessment of the sensitivity of y(x) with respect to any com-

ponent xi, i = 1, . . . , d, examines the change in y(x) as xi ranges over its do-

main for fixed values of the remaining inputs. In the case of (7.1.1), for fixed

x0
1

it is easy to see that the range of y(x0
1
, x2) as x2 varies over (0, 2), is 2 =

maxx2
y(x0

1
, x2) − minx2

y(x0
1
, x2) = y(x0

1
, 2) − y(x0

1
, 0) which is twice as large as

161

162 7 Sensitivity and Screening

1 = maxx1
y(·, x0

2
) − minx1

y(x0
1
, x2), the range of y(x1, x0

2
) over x1 for any fixed x0

2
.

Thus this second method of assessing sensitivity concludes that y(x1, x2) is twice as

sensitive to x2 as x1.

This example illustrates two approaches that have been used to assess the influ-

ence of inputs on a given output. Local sensitivity analysis measures the change in

the slope of the tangent to y(x) at x in the direction of a given input axis j, fixing

the remaining inputs. Global sensitivity analysis measures the change in y(x) as one

(or more inputs) vary over their entire domain when the remaining inputs are fixed.

As the example above shows, the different criteria can lead to different conclusions

about the sensitivity of y(x) to its inputs. When it is determined that certain inputs

have relatively little effect on the output, we can set these inputs to nominal val-

ues, and reduce the dimensionality of the problem allowing us to perform a more

exhaustive investigation of a predictive model with a fixed budget for runs.

Sensitivity analysis is also useful for identifying interactions between variables.

When interactions do not exist, the effect of any given input is the same regardless

of the values of the other inputs. In this case, the relationship between the output and

inputs is said to be additive and is readily understandable. When interactions exist,

the effects of some inputs on the output will depend on the values of other inputs.

The remainder of this chapter will emphasize methods of quantifying the global

sensitivity analysis of a code with respect to each of its inputs and then to estimating

these sensitivity indices. It will also describe a companion method of visualizing the

sensitivity of a code to each input based on elementary effects. An efficient class of

designs called one-at-a-time designs will be introduced for estimating elementary

effects.

For a comprehensive discussion of local and global sensitivity measures and their

estimation based on training data, one should refer to the book length descriptions

in Saltelli et al (2000) and Saltelli et al (2004).

7.2 Classical Approaches to Sensitivity Analysis

7.2.1 Sensitivity Analysis Based on Scatterplots and Correlations

Possibly the simplest approach to sensitivity analysis uses familiar graphical and

numerical tools. A scatterplot of each input versus the output of the code provides

a visual assessment of the marginal effect of each input on the output. The prod-

uct moment correlations between each input and the output indicate the extent to

which there is linear association between the outputs and the input. Scatterplots are

generally more informative than correlations because nonlinear relationships can be

seen in plots, whereas correlations only indicate the presence of straight-line rela-

tionships.

As an example, Figure 1.5 on page 11 plots the failure depth of pockets punched

into sheet metal (the output) versus clearance and versus fillet radius, two character-

7.2 Classical Approaches 163

istics of the machine tool used to form the pockets. The scatterplot of failure depth

versus clearance shows an increasing trend, suggesting that failure depth is sensi-

tive to clearance. However, in the scatterplot of failure depth versus fillet radius, no

trend appears to be present, suggesting that failure depth may not be sensitive to

fillet radius.

One limitation of marginal scatterplots is that they do not allow assessment of

possible interaction effects. Three graphical methods that can be used to explore

two-factor interaction effects are: three-dimensional plots of the output versus pairs

of inputs; two-dimensional plots that use different plotting symbols to represent the

(possibly grouped) values of a second input; and a series of two-dimensional plots

each of whose panels use only the data corresponding to a (possibly grouped) value

of the second input. The latter are called “trellis plots.” Graphical displays that allow

one to investigate 3-way and higher interactions are possible but typically require

some form of dynamic ability to morph the figure and experience in interpretation.

7.2.2 Sensitivity Analysis Based on Regression Modeling

Regression analysis provides another sensitivity analysis methodology that builds

on familiar tools. The method below is most effective when the design is orthogonal

or nearly orthogonal and a first-order linear model in the inputs x1, . . . , xd (nearly)

explains the majority of the variability in the output.

The regression approach to sensitivity analysis first standardizes the output y(x)

and all the inputs x1, . . . , xd. If n runs of the simulator code have been made, each

variable is standardized by subtracting that variable’s mean and dividing the differ-

ence by the sample standard deviation. For example, fix an input j, 1 ≤ j ≤ d, and

let x1, j, . . . , xn, j denote the values of this variable for the n runs. Let x j denote the

mean of x1, j, . . . , xn, j and s j their standard deviation. The standardized value of xi, j

is defined to be

x⋆i, j =
xi, j − x j

s j

, 1 ≤ i ≤ n.

In a similar fashion standardize the output values yielding y⋆
i

, 1 ≤ i ≤ n. Now fit the

first-order regression model

y⋆ = β⋆0 + β
⋆
1 x⋆1 · · · + β⋆d x⋆d (7.2.1)

to the standardized variables. The regression coefficients in (7.2.1) are called the

standardized regression coefficients (SRCs); β⋆
j

measures the change in y⋆ due to

a unit standard deviation change in input j. Because all variables have been placed

on a common scale, the magnitudes of the estimated SRCs indicate the relative

sensitivity of the output to each input. The output is judged most sensitive to those

inputs whose SRCs are largest in absolute value.

The validity of the method depends on the overall fit of the regression model,

either as indicated by standard goodness-of-fit measures such as the coefficient of

164 7 Sensitivity and Screening

determination R2. If the overall fit is poor, the SRCs do not reflect the effect of the

inputs on the output. In addition, regression-based methods are most effective when

the input design is orthogonal or at least space-filling so that changes in the output

due to one input can not be masked by changes in another.

Example 7.1. Recall that Subsection 1.7 described the failure depth for a computa-

tional model of the operation of punching symmetric rectangular pockets in auto-

mobile steel sheets. Table 7.1 lists the regression coefficients for model (7.2.1). This

analysis is likely to be reasonable because the R2 associated with the fitted model

is 0.9273. The estimated regression coefficients suggest that the output is most sen-

sitive to Clearance and then, equally so, to the two inputs Fillet Radius and Punch

Plan View Radius. The other inputs are of lesser importance. �

Input Estimated β⋆i in (7.2.1)

Clearance 0.8705

Fillet Radius 0.2490

Punch Plan View Radius 0.2302

Width 0.0937

Length 0.0681

Lock Bead Distance 0.0171

Table 7.1 Estimated SRCs for the fitted standardized model (7.2.1).

Example 7.2. Subsection 1.3 described a computer simulator of the temporal evolu-

tion of a fire in an enclosed room. This example selected, as output, the time until

the smoke plume of the fire reached five feet above the fire source. The inputs af-

fecting this time were the room area, room height, heat loss fraction, and height of

the fire source above the room. Figure 3.10 on page 85 shows the marginal relation-

ship between the output and each input based on a 40 point Sobol´ design. From

these plots, it appears that the output is most sensitive to room area, and not very

sensitive to the remaining inputs. We perform a sensitivity analysis of the output

Input Est. β⋆i in (7.2.1)

Heat Loss Frac. 0.1283

Fire Height 0.5347

Room Height 0.3426

Room Area 0.9066

Table 7.2 Estimated SRCs for the fitted standardized model (7.2.1).

function based on the 40 point training data for this example. Fitted model (7.2.1)

has R2 = 0.98 suggesting that the output is highly linear in the four inputs and the

regression approach to sensitivity analysis is likely to be accurate. Table 7.2 lists

the regression coefficients for this model. These values suggest that the single most

7.2 Classical Approaches 165

important input is Room Area, followed by Fire Height, Room Height, and lastly by

Heat Loss Fraction. �

There are a number of variants on regression-based models. Partial correlation

coefficients (PCCs) between the output and the inputs can be used to assess sensi-

tivity. PCCs measure the strength of the linear relationship between the output and

a given input, after adjusting for any linear effects of the other inputs. The relative

sizes of PCCs are used to assess the sensitivity of the output to the inputs.

As for SRCs, the same two circumstances will compromise the validity of PCCs.

If the overall fit of the model is poor or there is a high degree of collinearity among

the predictors PCCs need not provide accurate information about the sensitivity of

the output to the inputs.

A third variant of the regression approach finds rank transforms of both the in-

puts and the outputs. The rank transformation is carried out as follows. Suppose

that a variable has N values; assign rank 1 to the lowest values, rank 2 to the next

lowest, and rank N to the largest. Use the average rank for ties. Then fit a first-order

regression model to the transformed data. The estimated standardized regression

coefficients or partial correlations are used to assess the sensitivity of the output to

the inputs. Once again, if the overall fit of the first-order regression model is poor,

the standardized regression coefficients or partial correlations do not adequately de-

scribe the effect of the inputs on the output and this analysis does not provide good

information about sensitivities.

In practice, it has been observed that the regression model for the ranked trans-

formed data often has higher R2 values than that for the regression model based

on the standardized data. This may be because the rank transformation removes cer-

tain nonlinearities present in the original data. Thus, when monotone (but nonlinear)

trends are present, there are some advantages to conducting a sensitivity analysis us-

ing the rank transformed data. However, when one uses the rank transformed data,

one must keep in mind that the resulting measures of sensitivity give us information

on the sensitivity of the ranked transformed output to the rank transformed inputs,

rather than on the original variables.

A method that takes explicit account of the statistical significance of the esti-

mated regression coefficients is a Stepwise Regression Algorithm applied to the

standardized inputs. For example, if a forward stepwise regression is used, the first

variable entered would be considered the most influential input, the second vari-

able entered would be considered the second most influential input, etc. As is usual

in stepwise regression, one continues until the amount of variation explained by

adding further variables is not considered meaningful according to some criterion

selected by the user. Statistics such as the mean squared error, the F-statistic for test-

ing whether the addition of another variable significantly improves the model, the

coefficient of determination R2, or the adjusted R2 can be used to determine when to

stop the stepwise regression. For more on stepwise regression, see any standard text

on regression, for example Draper and Smith (1981).

Whether one uses the standardized or the rank transformed data, we get no in-

formation about possible interactions or on non-monotone effects of variables when

we fit first-order models. If one has reason to believe that interactions are present,

166 7 Sensitivity and Screening

or that the relation between the output and some of the inputs is nonlinear and non-

monotone, these regression methods will not give reliable information about sensi-

tivities. One may wish to consider fitting higher-order models such as a second-order

response surface to the output. Such a model allows one to explore second-order

(quadratic) effects of inputs and two-factor interaction (cross-product) effects. For

more on response surface methods, see Box and Draper (1987).

7.3 Sensitivity Analysis Based on Elementary Effects

The Elementary Effects (EEs) of a function y(x) = y(x1, . . . , xd) having d inputs

measures the sensitivity of y(x) to x j by directly measuring the change in y(x) when

x j alone is altered. From a geometric viewpoint, EEs are the slopes of secant lines

parallel to each of the input axes. In symbols, given j ∈ {1, . . . , d}, the jth EE of y(x)

at distance ∆ is

d j(x) =
y(x1, . . . , x j−1, x j + ∆, x j+1, . . . , xd) − y(x)

∆
. (7.3.1)

So specifically, d j(x) is the slope of the secant line connecting y(x) and y(x + ∆e j)

where e j = (0, 0, . . . , 1, 0, . . . , 0) is the jth unit vector. For “small” ∆, d j(x) is a nu-

merical approximation to the jth partial derivative of y(x) with respect to x j evalu-

ated at x and hence is a local sensitivity measures. However, in most of the literature,

EEs are evaluated for “large” ∆ at a widely sampled set of inputs x and hence are

global sensitivity measures measuring the (normalized) overall change in the output

as each input moves parallel to its axis.

Example 7.3. To gain intuition about the interpretation of EEs, consider the follow-

ing simple analytic “output” function

y(x) = 1.0 + 1.5x2 + 1.5x3 + 0.6x4 + 1.7x2
4 + 0.7x5 + 0.8x6 + 0.5x5 × x6, (7.3.2)

of d = 6 inputs where x = (x1, x2, x3, x4, x5, x6), and x j ∈ [0, 1] for j = 1, . . . , 6.

Notice that y(x) is functionally independent of x1, is linear in x2 and x3, is non-linear

in x4, and contains an interaction in x5 and x6. Note that if the range of x3 where

modified to be [0, 2], then larger range of x3 compared with x2 would mean that any

reasonable assessment of global sensitivity of y(x) to the inputs should conclude

that x3 is more active x2.

Straightforward algebra gives the value y(x+∆e j)− y(x), j = 1, . . . , 6, and hence

the EEs of y(x) can be calculated exactly as

1. d1(x) = 0,

2. d2(x) = 1.5 = d3(x),

3. d4(x) = +0.6 + 1.7∆ + 3.4x4,

4. d5(x) = +0.7 + 0.5x6, and d6(x) = +0.8 + 0.5x5.

7.3 Elementary Effects 167

The EEs for this example are interpreted as follows. The EE of the totally inactive

variable x1 is zero because y(x) is functionally independent of x1. The EEs of the

additive linear terms x2 and x3 are the same non-zero constant, 1.5, and hence (7.3.2)

is judged to be equally sensitive to x2 and x3. In general, the EEs of additive linear

terms are local sensitivity measures; from the global viewpoint which assesses the

sensitivity of y(x) to each input by the change in the output as the input moves over

its range, (7.3.2) is more sensitive x3 than x2 because x3 has a larger range than x2.

The EE of the quadratic term x4 depends on both the starting x4 and ∆; hence for

fixed ∆ d4(x) will vary with x4 alone. Lastly, the EEs of the interacting x5 and x6

depend on both of these inputs. �

EEs can be used as an exploratory data analysis tool, as follows. Suppose that

each d j(x), j = 1, . . . , d, has been computed for r vectors, say x
j

1
, . . . , x

j
r . Let d j

and S j denote the sample mean and sample standard deviation, respectively, of

d j(x
j

1
), . . . , d j(x

j
r). Then as Morris (1991) states, an input x j having

• a small d j and small S j is non-influential;

• a large d j and small S j has a strong linear effect on y(x);

• a large S j (and either a large or small d j) either has a non-linear effect in x j or x j

has strong interactions with other inputs.

Example 7.3 [Continued] To illustrate, consider (7.3.2) in Example 7.3. Suppose

that y(x) is evaluated for each row of Table 7.3. Table 7.3 contains five blocks of

six rows; each block begins with a row in bold-face font. The difference of the y(x)

values computed from consecutive pairs of rows provide one d j(x) value. Note that

every successive pair of rows differs by ± |∆| = 0.3 in one input location. In all,

these output function evaluations provide r = 5 d j(x) evaluations for five different

x. The construction of the input table, “the design” of these runs, will be discussed

in the subsequent paragraphs. Here, only the interpretation of the plot is considered.

Figure 7.1 plots the d j and S j values from the individual EEs computed in the

previous paragraph. Because S 1 = 0 = S 2 = S 3, the plot shows that d1(x), d2(x),

and d3(x) are each constant and have values 0.0, 1.5, and 1.5, respectively (as the

theoretical calculations showed). Hence these (d j, S j) points are interpreted as say-

ing that y(x) is functionally independent of x1, and contains an additive linear term

in each of x2 and x3. Because S j > 0 for j = 4, 5, and 6, the corresponding d j(x)

values vary with x. Hence one can conclude that either y(x) is not linear in x j or that

x j interacts with the other inputs. �

How should one select runs in order to efficiently estimate EEs of y(x)? By defi-

nition, each d j(x) requires two function evaluations. Hence, at first impulse, a total

of 2 × r function evaluations would be required to estimate r EEs. Morris (1991)

proposed a more efficient one-at-time (OAT) sampling design for estimating the EEs

when the input region is rectangular. This method is particularly useful for providing

a sensitivity analysis of an expensive black-box computer simulator. To introduce the

method, consider the sequence of six runs of a function y(x) = y(x1, x2, x3, x4, x5)

168 7 Sensitivity and Screening

-1 -0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

 1 2

 4

 5 6

 3

d-bar

S
d

Fig. 7.1 Plot of d j and S j values for the EEs computed for function y(x) in (7.3.2) using the design

in Table 7.3

Run x1 x2 x3 x4 x5

1 0.8 0.7 1.0 0.7 0.7

2 0.5 0.7 1.0 0.7 0.7

3 0.5 1.0 1.0 0.7 0.7

4 0.5 1.0 0.7 0.7 0.7

5 0.5 1.0 0.7 1.0 0.7

6 0.5 1.0 0.7 1.0 0.4

having d = 5 inputs with input domain [0, 1]5. The function y(x) evaluated at Runs

1 and 2 can used to compute d1(0.8, 0.7, 1.0, 0.7 , 0.7) for ∆ = −0.3. Similarly the

differences of each consecutive pairs of rows provide, in order, estimates of d2(x),

d3(x), d4(x), and d5(x) for different x but each using |∆| = 0.3. Such a set of rows

is termed a tour of input space. For a given distance |∆|, OAT designs provide a set

of (d + 1) × d tours with each tour starting at a randomly selected point of the input

space and having successive rows that differ in a single input by ±∆.

Each tour of the Morris (1991) OAT design is (d + 1) × d matrix whose rows are

valid input vectors for y(·). The tour is determined a starting vector x, a permutation

of (, 12, . . . , d) that specifies the input to be modified in successive pairs of rows,

by the choice of ∆ > 0, and by d × 1 vector (±1, . . . ,±1) of directional movements

for ∆ in the successive pairs of rows. For example the first tour in Table 7.3 uses

starting vector x = (0.8, 0.7, 1.0, 0.7, 0.7), alters the inputs in succeeding rows in

the order (1, 2, 3, 4, 5) with ∆ = 0.3 and signs (−1,+1,−1,+1,−1). Each row of the

tour is an element of [0, 1]5, which is the valid input region in this case. In examples

where the design consisting of multiple tours, Morris (1991) selects the magnitude

of ∆ to be 30% of the common range of each variable, takes a random permutation

7.4 Global Sensitivity Indices 169

of (1, . . . , d), makes a random selection of the directional sign to be associated with

each input, and selects the starting x randomly from a gridding of the input space

that is made in such a way all rows of selected tour belong to the domain of y(x).

A number of enhancements have been proposed to the basic Morris (1991) OAT

design. Campolongo et al (2007) suggest ways of making OAT designs more space-

filling. They propose selecting the desired number, r, of tours to maximize a heuris-

tic distance criterion between all pairs of tours. Their R package sensitivity im-

plements this criterion; it was used to construct the design in Table7.3. Pujol (2009)

proposed a method of constructing OAT designs whose projections onto subsets of

the input space are not collapsing. This is important if y(x) depends only a subset

of “active” inputs. For example, suppose that y(x) depends (primarily) on x j where

j ∈ {1, 3, 5} and other xℓ are “inactive.” If multiple x inputs from the selected EE de-

sign have common x j for j ∈ {1, 3, 5}, then y(x) evaluations at these x would produce

(essentially) the same output and hence little information about the input-output re-

lationship. Campolongo et al (2011) introduced an OAT design that spreads starting

points using Sobel´ sequence and differential ∆ for each pair of input vectors. Finally

Sun et al (2014) introduced an OAT design that can be be used for non-rectangular

input regions and an alternative method to Campolongo et al (2007) for spreading

the secant lines of the design over the input space.

7.4 Global Sensitivity Analysis Based on a Functional ANOVA

Decomposition

Often, one of the first tasks in the analysis of simulator output y(x) is the rough

assessment of the sensitivity of y(x) to each input x j. In a combined physical sys-

tem/simulator setting, the analogous question is the determination of the sensitivity

of the mean response of the physical system to each input.

Sobol´ (1990), Welch et al (1992), and Sobol´ (1993) introduced plotting meth-

ods to make such an assessment. They introduce the use of main effect plots and

joint effect plots. They also define various numerical “sensitivity” indices (SIs) to

make such assessments. This section will define these effect plots and a functional

ANOVA decomposition of the output y(x) that is used to define “global SIs.”

More formal variable screening methods have been developed for computer sim-

ulators by Linkletter et al (2006) and Moon et al (2012). The methodology in both

papers assumes training data is available to construct a Gaussian Process emulator

of the output at arbitrary input sites (with Gaussian correlation function). Linklet-

ter et al (2006) use the (posterior distribution of the) estimated process correlation

for each input to assess its impact on y(x) while Moon et al (2012) calculate each

inputs’ “total effect” index for the same purpose.

To ease the notional burden, from this point on assume that y(x) has a hyperrect-

angular input domain which is taken to be [0, 1]d. If the input domain of y(x) is∏d
j=1[a j, b j], one should apply the methods below to the function

170 7 Sensitivity and Screening

x1 x2 x3 x4 x5 x6

0.50 0.60 0.50 0.40 0.50 0.35

0.80 0.60 0.50 0.40 0.50 0.35

0.80 0.90 0.50 0.40 0.50 0.35

0.80 0.90 0.80 0.40 0.50 0.35

0.80 0.90 0.80 0.10 0.50 0.35

0.80 0.90 0.80 0.10 0.20 0.35

0.80 0.90 0.80 0.10 0.20 0.05

0.85 0.3 0.9 0.65 0.3 0.40

0.55 0.30 0.90 0.65 0.3 0.40

0.55 0.00 0.90 0.65 0.30 0.40

0.55 0.00 0.60 0.65 0.30 0.40

0.55 0.00 0.60 0.95 0.30 0.40

0.55 0.00 0.60 0.95 0.60 0.40

0.55 0.00 0.60 0.95 0.60 0.10

0.65 0.00 0.35 0.75 0.45 0.60

0.35 0.00 0.35 0.75 0.45 0.60

0.35 0.3 0.35 0.75 0.45 0.60

0.35 0.3 0.05 0.75 0.45 0.60

0.35 0.3 0.05 0.45 0.45 0.60

0.35 0.3 0.05 0.45 0.75 0.60

0.35 0.3 0.05 0.45 0.75 0.90

0.9 0.05 0.35 0.05 0.4 1.0

0.60 0.05 0.35 0.05 0.40 1.00

0.60 0.35 0.35 0.05 0.40 1.00

0.60 0.35 0.05 0.05 0.40 1.00

0.60 0.35 0.05 0.35 0.40 1.00

0.60 0.35 0.05 0.35 0.10 1.00

0.60 0.35 0.05 0.35 0.10 0.70

0.40 0.35 0.60 0.00 0.35 0.60

0.10 0.35 0.60 0.00 0.35 0.60

0.10 0.05 0.60 0.00 0.35 0.60

0.10 0.05 0.90 0.00 0.35 0.60

0.10 0.05 0.90 0.30 0.35 0.60

0.10 0.05 0.90 0.30 0.05 0.60

0.10 0.05 0.90 0.30 0.05 0.30

Table 7.3 An OAT design with r = 5 complete tours for a d = 6 input function with domain [0, 1]6

and |∆| = 0.30.

y⋆(x1, . . . , xd) = y(a1 + x1(b1 − a1), . . . , ad + xd(bd − ad) .

When the input domain is not a hyperrectangle, there are several papers that consider

analogs of the effect function definitions and sensitivity indices defined below; how-

ever this topic is an area of active research as of the writing of this book (Loeppky

et al (2011)).

Section 7.4.1 introduces (uncentered) main effect and joint effect functions for

a given y(x), which are weighted y(x) averages. Then Section 7.4.2 describes an

ANOVA-like expansion of y(x) in terms of centered and orthogonalized versions

of the main and joint effect functions. Section 7.4.3 defines sensitivity indices for

7.4 Global Sensitivity Indices 171

individual inputs and groups of inputs in terms of the variability of these functional

ANOVA components. Section 7.5 provides methods for estimating these plots and

indices based on a set of y(x) runs. The emphasis in Section 7.5 will be on methods

that for cases of simulators having “expensive” code runs so that limited amounts of

training data are available.

7.4.1 Main Effect and Joint Effect Functions

Denote the overall mean of y(·) by

y0 ≡
∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd)

d∏

j=1

dx j. (7.4.1)

More generally, the average (7.4.1) can be weighted, as for example, in scientific

settings where is there is uncertainty in the input values that can be specified by in-

dependent input distributions. From this viewpoint, (7.4.1) and the development be-

low assumes that the weight function corresponds to assuming that X = (X1, . . . , Xd)

has independent and identically distributed (i.i.d.) U(0, 1) component distributions.

However, the definitions and analysis below can be easily generalized to allow

weight functions that correspond to independent x j components with arbitrary den-

sities, say g(x) =
∏d

j=1 g j(x j), where g j(·) is a density on [0, 1]. Thus the overall

mean y0 can be interpreted as the expectation E
[
y(X)

]
where the weight function

gives the joint distribution of X.

Similarly, for any fixed i ∈ {1, . . . , d}, the ith main effect function associated with

y(x) is defined to be

ui(xi) =

∫ 1

0

·
∫ 1

0

y(x1, . . . , xd)
∏

ℓ,i

dxℓ = E
[
y(X)|Xi = xi

]
; (7.4.2)

which is the average y(x) value when xi is fixed. The expectation notation uses the

fact that the components of X are independent.

The idea of averaging y(x) when a single input is fixed can be extended to fixing

multiple inputs. Select a nonempty subset Q of {1, . . .d} for which Q = Q \ {1, . . .d}
is also non-empty (so that the integral below averages over at least one variable).

Let xQ denote the vector of components xi with i ∈ Q in some linear order. Define

the average value of y(x1, . . . , xd) when xQ is fixed to be

uQ(xQ) =

∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd)
∏

i<Q

dxi = E
[
y(X)|XQ = xQ

]
.

For completeness, set

u12...d(x1, . . . , xd) ≡ y(x1, . . . , xd)

172 7 Sensitivity and Screening

(when Q = {1, . . .d}).
The function uQ(xQ) is called the joint effect function of y(x) with respect to xQ.

Joint effect functions are also called uncentered effect functions to make explicit the

fact that their average over any single xi, i ∈ Q (or collection of xi for any proper

subset of i in Q) need not be zero. However, the mean of any uQ

(
XQ

)
, Q ⊂ {1, . . . , d},

with respect to all XQ is y0, i.e.,

E
[
uQ

(
XQ

)]
=

∫ 1

0

· · ·
∫ 1

0

uQ(xQ) dxQ = y0 . (7.4.3)

ANOVA-type centered versions of the uQ(xQ) will be considered in the next subsec-

tion.

Example 7.4. Suppose y(x1, x2) = 2x1 + x2 is defined on [0, 1]2. Then the overall

mean and uQ effect functions are

y0 =

∫ 1

0

∫ 1

0

(2x1 + x2)dx2dx1 = 1.5,

u1(x1) =

∫ 1

0

(2x1 + x2)dx2 = 0.5 + 2x1,

u2(x2) =

∫ 1

0

(2x1 + x2)dx1 = 1.0 + x2, and

u12(x1, x2) = y(x1, x2) = 2x1 + x2.

Illustrating the fact (7.4.3) that y0 is the mean of every uQ(XQ) with respect to XQ, it

is simple to calculate that

∫ 1

0

u1(x1) dx1 =

∫ 1

0

u2(x1) dx2 =

∫ 1

0

u11(x11) dx1 dx2 = 1.5.

Plots of the main effect functions, shown in Figure 7.2, provide accurate infor-

mation of how this simple function behaves in x1 and x2. �

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x
1

u(
x 1)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x
2

u(
x 2)

Fig. 7.2 Plots of the main effect functions u1(x1) and u2(x2) for y(x1 , x2) = 2x1 + x2.

7.4 Global Sensitivity Indices 173

Example 7.5. The so-called g-function with d inputs is defined to be

y(x1, . . . , xd) =

d∏

i=1

|4xi − 2| + ci

1 + ci

(7.4.4)

where x ∈ [0, 1]d and c = (c1, . . . , cd) has non-negative components (Saltelli and

Sobol´ (1995)).

Note that y(x) is a product of functions of each input and does not involve stand-

alone “linear” terms in any inputs. As the definition of the effect function states,

and this example is meant to emphasize, ui(xi) contains the contributions of every

xi component no matter whether they appear as a stand-alone term or as part of an

interaction.

The value of

q(x) =
|4x − 2| + c

1 + c
, (7.4.5)

over x ∈ [0, 1] forms a pair of line segments that are symmetric about x = 1/2, with

minimum value of c/(1+c) = q(1/2) and maximum value of (2+c)/(1+c) = q(0) =

q(1). Thus it is straightforward to calculate that

∫ 1

0

|4x − 2| + c

1 + c
dx = 1.0 (7.4.6)

for every c ≥ 0 because this integral is the sum of the areas of two identical trape-

zoids (triangles when c = 0). The parameter c determines how “active” x is in the

associated q(x). Figure 7.3 illustrates the level of activity of q(x) on c; three q(x)

with c ∈ {0, 5, 25}, are plotted. Clearly, the smaller the value of c, the more “active”

is x.

Returning to the g-function with arbitrary numbers of inputs, (7.4.4), and arbi-

trary vector of parameters c = (c1, . . . , cd) ≥ 0, the main and joint effect functions

of y(x) are simple to calculate using (7.4.6). The overall mean is

y0 =

∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd)

d∏

ℓ=1

dxℓ =

d∏

ℓ=1

∫ 1

0

|4xi − 2| + c

1 + c
dxℓ = 1.0 .

The ith main effect function is

ui(xi) =
|4xi − 2| + ci

1 + ci

× 1 =
|4xi − 2| + ci

1 + ci

i = 1, . . . , d .

Thus the main effect plots of individual inputs have essentially the symmetric form

shown in Figure 7.3.

In a similar way, given a nonempty subset Q of {1, . . .d},

uQ(xQ) =
∏

i∈Q

|4xi − 2| + ci

1 + ci

. (7.4.7)

174 7 Sensitivity and Screening

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

x

(|
4x

-2
| +

 c
)/

(1
+

c)

Fig. 7.3 q(x) ≡ |4x−2|+c

1+c
for c = 0 (solid line), c = 5 (dashed line), and c = 25 (dotted line).

For example,

u12(x1, x2) =
|4x1 − 2| + c1

1 + c1

× |4x2 − 2| + c2

1 + c2

. (7.4.8)

which is plotted in Figure 7.4 for c1 = 0.25 and c2 = 10.0. Clearly this func-

tion shows that x1, the input associated with the smaller ci, is more active than x2.

Visualizations of higher-order effect functions, while more difficult to display effec-

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

x
1

x
2

u 12
(x

1,x
2)

Fig. 7.4 Joint effect function (7.4.8) for c1 = 0.25 and c2 = 10.0.

7.4 Global Sensitivity Indices 175

tively, can also be made. �

In general, plots of the main effect functions (xi, ui(xi)) and, for pairs of inputs

(xi, x j), the joint effect functions
(
(xi, x j), ui(xi, x j)

)
can be used to provide a rough

visual understanding of the change in the averaged y(x) with respect to each single

input or pairs of inputs. Section 7.5 will describe methods of estimating the uQ(xQ)

based a set of training data obtained from the output function.

7.4.2 Functional ANOVA Decomposition

The uncentered uQ(xQ) describe average changes in y(x); uQ(xQ) values on the same

scale and in the same range as y(x). The sensitivity indices that we shall define

shortly will be based on the variance of these uQ(xQ) where the variance is with

respect to a uniform distribution of the xi inputs, i = 1, . . .d. Viewed with this goal in

mind, the (uncentered) main and joint effect functions have an important defect that

limits their useful for constructing sensitivity indices. When viewed as functions of

random Xi inputs, different effect functions are, in general, correlated. For example,

if X1 and X2 are independent U(0, 1) random variables, cov(u1(X1), u2(X2)) need not

equal 0.

Thus Sobol´ (1990), and Sobol´ (1993) advocated the use of a functional ANVOA-

like decomposition of y(x) that modifies the joint effect functions to produce uncor-

related (and zero mean) versions of the uQ(xQ) (see also Hoeffding (1948)). The

modified functions will be used to define “sensitivity” indices.

Specifically, Sobol´ (1993) proposed use of the (unique) decomposition of y(x),

y(x) = y0 +

d∑

i=1

yi(xi) +
∑

1≤i< j≤d

yi j(xi, x j) + . . . + y1,2,...,d(x1, . . . , xd) (7.4.9)

that results in terms having zero means and such that any pair of these functions are

orthogonal. The mean and orthogonality properties will be defined once formulas

are given that define the components of (7.4.9). These terms are called corrected

(mean or joint) effect functions because of the fact that they (turn out to) have mean

zero.

To define the component functions in (7.4.9), first fix i, 1 ≤ i ≤ d, and set

yi(xi) = ui(xi) − y0 =

∫ 1

0

· · ·
∫ 1

0

y(x)
∏

ℓ,i
dxℓ − y0 (7.4.10)

to be the centered main effect function of input xi. Similarly, for any fixed (i, j),

1 ≤ i < j ≤ d, define

176 7 Sensitivity and Screening

yi j(xi, x j) = ui j(xi, x j) − yi(xi) − y j(x j) − y0

=

∫ 1

0

· · ·
∫ 1

0

y(x)
∏

ℓ,i, j

dxℓ − yi(xi) − y j(x j) − y0 (7.4.11)

to be the centered interaction effect function of inputs xi and x j. Higher-order in-

teraction terms are defined in a recursive manner; if Q is a non-empty subset of

{1, . . .d},
yQ(xQ) = uQ(xQ) −

∑

E

yE(xE) − y0 (7.4.12)

where the sum over all non-empty proper subsets E of Q; E ⊂ Q is proper provided

E , Q. For example, if y(x) has three or more arguments,

y123(x1, x2, x3) = u123(x1, x2, x3) − y12(x1, x2) − y13(x1, x3) − y23(x2, x3)

−y1(x1) − y2(x2) − y3(x3) − y0

In particular,

y1,2,...,d(x1, x2, . . . , xd) = u1,2,...,d(x1, x2, . . . , xd) −
∑

E

yE(xE) − y0

= y(x1, x2, . . . , xd) −
∑

E

yE(xE) − y0

so that (7.4.9) holds.

The centered effect functions in (7.4.9) have two properties that make them ex-

tremely useful for defining sensitivity indices. First, each has zero mean in the sense

that for any (i1, . . . , is) and any ik ∈ {i1, . . . , is},

E
[
yi1,...,is

(xi1 , . . . , Xik , . . . , xis)
]
=

∫ 1

0

yi1,...,is
(xi1 , . . . , xis

) dxik = 0. (7.4.13)

Second, the centered effect functions are orthogonal meaning that for any (i1, . . . , is)

, (j1, . . . , jt),

Cov
(
yi1,...,is

(Xi1 , . . . , Xis
), y j1,..., jt (X j1 , . . . , X jt)

)
=

∫ 1

0

· · ·
∫ 1

0

yi1,...,is
(xi1 , . . . , xis

) × y j1,..., jt (x j1 , . . . , x jt)
∏

ℓ

dxℓ = 0 (7.4.14)

where the product in (7.4.14) is over all ℓ ∈ {i1, . . . , is}∪{ j1, . . . , jt} (see Section 7.7).

Example 7.4 [Continued] Using y0, and the uQ(·) effect functions calculated previ-

ously, we have

y1(x1) = u1(x1) − y0 = 0.5 + 2x1 − 1.5 = −1 + 2x1

y2(x2) = u2(x2) − y0 = 1.0 + x2 − 1.5 = −0.5 + x2

y12(x1, x2) = u12(x1, x2) − y1(x1) − y2(x2) − y0 = 0.

7.4 Global Sensitivity Indices 177

The function y12(x1, x2) = 0 suggests the lack of interaction between x1 and x2.

It is straightforward to verify the properties (7.4.13) and (7.4.14) for this example

because

E
[
y1(X1)

]
=

∫ 1

0

(−1 + 2x1)dx1 = 0

E
[
y2(X2)

]
=

∫ 1

0

(−0.5 + x2)dx2 = 0 (7.4.15)

E
[
y12(X1, x2)

]
= 0 = E{y12(x1, X2)}

and, for example,

Cov(y1(X1), y12(X1, X2)) = 0. �

Example 7.5 [Continued] Recalling formula (7.4.7), the first two centered effect

functions are

yi(xi) = ui(xi) − y0 =
|4xi − 2| + ci

1 + ci

− 1

=
|4xi − 2| − 1.0

1 + ci

,

for 1 ≤ i ≤ d, and

yi j(xi, x j) = ui j(xi, x j) − yi(xi) − y j(x j) − y0

=
|4xi − 2| + ci

1 + ci

×
|4x j − 2| + c j

1 + c j

− |4xi − 2| − 1.0

1 + ci

−
|4x j − 2| − 1.0

1 + c j

− 1,

for 1 ≤ i < j ≤ d. �

The corrected effects will be used to partition the variance of y(X) into compo-

nents of variance that are used to define global sensitivity indices for an arbitrary set

of input variables. Recall that X1, . . . , Xd are independent and identically distributed

U(0, 1) random variables and

y0 = E
[
y(X)

]
.

Define the total variance V of y(x) to be

v = E
[
(y(X) − y0)2

]
= E

[
y2(X)

]
− y2

0.

Recalling that for any subset Q ⊂ {1, . . . , d}, yQ(XQ) has mean zero let

vQ = Var(yQ(XQ)) = E
[
y2

Q
(XQ)

]

denote the variance of the term yQ(XQ) in (7.4.9). Using (7.4.9), we calculate

178 7 Sensitivity and Screening

v = E
[
(y(X) − y0)2

]

= E




d∑

i=1

yi(Xi) +
∑

i< j

yi j(Xi, X j) + . . . + y1,2,...,d(X1, . . . , Xd)



2

=

d∑

i=1

E
[
y2

i (Xi)
]
+

∑

i< j

E
[
y2

i j(Xi, X j)
]
+ · · · + E

[
y2

1,2,...,d(X1, . . . , Xd)
]

+
∑

E
[
yE(XE)yE⋆ (XE⋆)

]
(7.4.16)

where the sum in (7.4.16) is over all nonempty subsets E and E⋆ of {1, . . . , d} for

which E , E⋆, and thus

v =

d∑

i=1

E
[
y2

i (Xi)
]
+

∑

i< j

E
[
y2

i j(Xi, X j)
]
+ · · ·

+ E
[
y2

1,2,...,d(X1, . . . , Xd)
]

(7.4.17)

=

d∑

i=1

vi +
∑

i< j

vi j + · · · + v1,2,...,d (7.4.18)

with (7.4.17) holding because the components of (7.4.9) are orthogonal, and (7.4.18)

because each term of the Soboĺ decomposition has zero mean.

The functional decomposition (7.4.9) can, in a more formal way, be modified to

result in the classical ANOVA decomposition of a model with d quantitative factors.

Suppose that, instead of X taking a uniform distribution over [0, 1]d, the input factor

space is regarded as the discrete set of points {0, 1
n−1

, . . . , n−2
n−1

, 1}d with a discrete

uniform distribution over these n values. This would arise, for example, if the inputs

formed an nd factorial with n levels for each factor that are coded 0, 1
n−1

, . . . , n−2
n−1

,

1. Replacing each integral over [0, 1] that defines a term in (7.4.9) by an average

over the n discrete values, y0 becomes y, the overall mean of all the y(·), the {yi}i
become the usual ANOVA estimates of main effects in a complete factorial, the

{yi j}i j become the usual ANOVA estimates of two-factor interactions in a complete

factorial, and so on. Finally, it is clear that v in (7.4.18), is the mean corrected sum

of squares of all the y(·), vi is the sum of squares for the ith factor and so forth. Thus,

the decomposition (7.4.18) is the usual ANOVA decomposition into sums of squares

for main effects, and higher-way interactions.

7.4.3 Global Sensitivity Indices

For any subset Q ⊂ {1, . . . , d}, define the sensitivity index (SI) of y(x) with respect

the set of inputs xi, i ∈ Q, to be

S Q =
vQ

v
.

7.4 Global Sensitivity Indices 179

In particular S i, corresponding to Q = {i}, is called the first-order or main effect

sensitivity index of input xi, i = 1, . . . , d; S i measures the proportion of the variation

V that is due to input xi. For i < j, S i j is called the second-order sensitivity index;

S i j measures the proportion of V that is due to the joint effects of the inputs xi and

x j. Higher-order sensitivity indices are defined analogously. By construction, the

sensitivity indices satisfy

d∑

i=1

S i +
∑

1≤i< j≤d

S i j + · · · + S 1,2,...,d = 1.

We illustrate these definitions and the interpretations of SIs with examples.

Example 7.4 [Continued] Recalling y1(x1), y2(x2), and y12(x1, x2) calculated previ-

ously, we calculate that

v = Var(y(X1, X2)) = Var(2X1 + X2) = 4/12 + 1/12 = 5/12

v1 = Var(y1(X1)) = Var(−1 + 2X1) = 4/12

v2 = Var(y2(X2)) = Var(−0.5 + X2) = 1/12

v12 = Var(y12(X1, X2)) = Var(0) = 0

so that v = v1 + v2 + v12 and

S 1 =
4/12

1/12
= 4.0, S 2 =

1/12

1/12
= 1.0, and S 12 = 0.0.

The interpretation of these values coincides with our intuition about y(x1, x2): x1 is

more important than x2 while there is no interaction between x1 and x2. The only

deviation from our intuition is that, based on the functional relationship, the reader

might have assessed that x1 was twice as important x2. �

Before considering other examples, we use the S Q sensitivity indices to define

the so-called total sensitivity index (TSI) of y(x) with respect to a given input xi; Ti

is meant to include interactions of xi with all other inputs. The total sensitivity of

input i is defined to be sum of all the sensitivity indices involving the ith input; in

symbols,

Ti = S i +
∑

j>i

S i j +
∑

j<i

S ji + · · · + S 1,2,...,d . (7.4.19)

For example, when d = 3,

T1 = S 1 + S 12 + S 13 + S 123. (7.4.20)

By construction, Ti ≥ S i, i = 1, . . . , d and the difference Ti − S i measures the influ-

ence of xi due to its interactions with other variables. In principle, the calculation of

the set of Ti requires that one determine a total of
∑d

i=1

(
d

i

)
variances, vQ. But there

is at least one method of making this computation more efficient which we describe

next.

180 7 Sensitivity and Screening

For arbitrary Q ⊂ {1, . . . , d}, let

vu
Q = Var

(
uQ(XQ)

)
= Var

(
E

{
y(X)|XQ

})
(7.4.21)

to be the variance of the uncorrected effect. The quantity vu
Q

can be interpreted as

the average reduction in uncertainty in y(x) when xQ is fixed because

vu
Q = Var (y(X)) − E

{
Var

(
y(X)|XQ

)}
.

Consider two special cases of the uncorrected effect function variances. From

(7.4.10), the variance of the uncorrected effect function ui(xi) of the input xi is

vu
i = Var (yi(Xi) + y0) = vi. (7.4.22)

Thus the main effect sensitivity index of input xi, S i, can be computed from

S i =
vu

i

v
. (7.4.23)

Using (7.4.11), and the orthogonality property (7.4.14), the variance of the un-

corrected effect u(xi, x j) is

vu
i j = Var

(
yi(Xi) + y j(X j) + yi j(Xi, X j) + y0

)
= vi + v j + vi j. (7.4.24)

Equation (7.4.24) contains both the variance of the main effects and the variance of

the interaction effect of inputs xi and x j. Thus vu
Q
, vQ when Q contains more than

one input.

Equation (7.4.24) can be extended to arbitrary Q. We illustrate the usefulness of

this expression by developing a formula for Ti where i is a fixed integer, i = 1, . . . , d,

using Q = {1, . . . , d} − {i}. Let X−i denote the vector of all components of X except

Xi. Then

vu
−i = Var (u−i(X−i))

= Var (y1,2,...,i−1,i+1,...,d (X−i) + · · · + y1 (X1) + y2 (X2) + · · ·
+ yi−1 (Xi−1) + yi+1 (Xi+1) + · · · + yd (Xd) + y0)

= Var


∑

Q: i<Q

yQ(XQ)



= v1,2,...,i−1,i+1,...,d + · · · + vd + · · · + vi+1 + vi−1 + · · · + v1

=
∑

Q: i<Q

vQ . (7.4.25)

Equation (7.4.25) is the sum of all vQ components not involving the subscript i in

the variance decomposition (7.4.18). Thus v − vu
−i

is the sum of all vQ components

that do involve the input xi. Hence Ti can be expressed as

7.4 Global Sensitivity Indices 181

Ti =
v − vu

−i

v
. (7.4.26)

Thus if one is interested in estimating only the 2d main effect and total effect SIs,

{S i}i and {Ti}i, for i = 1, . . . , d, only 2d uncorrected effect variances (7.4.21) need

be determined, rather than
∑d

i=1

(
d

i

)
variance terms used in their definition.

Example 7.5 [Continued] Recall the g-function (7.4.4) with d arguments,

y(x) =

d∏

i=1

|4xi − 2| + ci

1 + ci

. (7.4.27)

We calculate its associated S i and Ti values. We will use the fact that if X ∼ U(0, 1),

then

Var (|4X − 2|) = 16Var (|X − 1/2|)
= 16

{
E[(X − 1/2)2] − (E[|X − 1/2|])2

}
= 1/3 .

Hence the total variance of y(x) is

v = Var (y(X))

= Var


d∏

ℓ=1

|4Xℓ − 2| + cℓ

1 + cℓ



= E


d∏

ℓ=1

(
|4Xℓ − 2| + cℓ

1 + cℓ

)2
 − 1.0

=

d∏

ℓ=1

E



(
|4Xℓ − 2| + cℓ

1 + cℓ

)2
 − 1.0 (7.4.28)

=

d∏

ℓ=1

[
Var

(
|4Xℓ − 2| + cℓ

1 + cℓ

)
+ 1

]
− 1

=

d∏

ℓ=1

[
1

(1 + cℓ)2
Var(|4Xℓ − 2|) + 1

]
− 1

=

d∏

ℓ=1

(
1

3(1 + cℓ)2
+ 1

)
− 1 .

For i = 1, . . . , d, the numerator of S i is the variance of the first-order effect function

yi(Xi)

vi = Var (yi(Xi)) = Var

(
|4Xi − 2| + ci

1 + ci

)
=

1

3(1 + ci)2
(7.4.29)

and hence

S i = vi/v = (7.4.29)/(7.4.28) . (7.4.30)

182 7 Sensitivity and Screening

In a similar fashion, for fixed i = 1, . . . , d, the uncorrected effect function

u−i(x−i) =
∏

ℓ,i

|4Xℓ − 2| + cℓ

1 + cℓ

has variance

vu
−i = Var (u−i(X−i))

= Var


∏

ℓ,i

|4Xℓ − 2| + cℓ

1 + cℓ



=
∏

ℓ,i

(
1

3(1 + cℓ)2
+ 1

)
− 1

following algebra similar to that used to derive v. Hence, after some simplification,

Ti =
v − vu

i

v
=

(
1

1+3(1+ci)2

)∏d
ℓ=1

(
1

3(1+cℓ)2 + 1
)

∏d
ℓ=1

(
1

3(1+cℓ)2 + 1
)
− 1 .

(7.4.31)

As a specific example, consider the d = 2 case illustrated in Figure 7.4 where c1 =

0.25 and c2 = 10.0. Calculation of (7.4.30) and (7.4.31) give the values in Table 7.4.

i S i Ti

1 0.9846 0.9873

2 0.0127 0.0154

Table 7.4 Main effect and total effect sensitivity indices for the function (7.4.27) when d = 2.

The S i and Ti are interpreted as saying that (1) x1 is far more active input than

x2 and (2) there is virtually no interaction between x1 and x2 because S 12 = T1 −
S 1 = T2 − S 2 = 0.0027. Figure 7.4, the joint main effect function of x1 and x2,

essentially shows the function y(x1, x2) for this d = 2 example. This plot verifies the

interpretations (1) and (2) are correct. For each x0
2
∈ [0, 1], {y(x1, x0

2
) : 0 ≤ x1 ≤ 1}

has a v-shaped profile that is independent of x0
2
; for each x0

1
∈ [0, 1], {y(x0

1
, x2) : 0 ≤

x2 ≤ 1} is a horizontal line with height depending on x0
1
. �

Example 7.6. This section concludes with an example that shows both the strength

and weakness of trying to summarize the behavior of a potentially complicated func-

tion by several real numbers. Consider

y(x1, x2, x3) = (x1 + 1)cos(πx2) + 0x3 = cos(πx2) + x1cos(πx2) + 0x3

defined on [0, 1]3. The formula shows that y(x) has a term depending only on x2,

an x1 by x2 “interaction” term, and does not depend on x3. A plot of (x1, x2) versus

7.4 Global Sensitivity Indices 183

y(x1, x2, 0.5), which is the same for any x3, is shown in Figure 7.5. Any reasonable

measure of the sensitivity of y(·) to the inputs should show that x3 has zero influence

on the function while both x1 and x2 are influential.

00.20.40.60.81

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

x
1

y(
x 1,x

2,0
.5

)

Fig. 7.5 The function y(x1 , x2, 0.5) = (x1 + 1)cos(πx2) + 0x3 versus x1 and x2.

Using the facts that

∫ 1

0

cos(πx) dx = 0 and

∫ 1

0

cos2(πx) dx =
1

2
,

it is straightforward to compute that the overall mean is

y0 =

∫ 1

0

∫ 1

0

∫ 1

0

(x1 + 1) cos(πx2)dx1 dx2 dx3 = 0

and the uncentered effect functions are

u1(x1) =

∫ 1

0

∫ 1

0

(x1 + 1) cos(πx2)dx2 dx3 = 0

u2(x2) =

∫ 1

0

∫ 1

0

(x1 + 1) cos(πx2)dx1 dx3 =
3

2
cos(πx2)

u3(x3) =

∫ 1

0

∫ 1

0

(x1 + 1) cos(πx2)dx1 dx2 = 0

which are also the centered effects, y1(x1), y2(x2), y3(x3), respectively, because y0 =

0. That y3(x3) = 0 is expected while y1(x1) = 0 may be unexpected. However, in

184 7 Sensitivity and Screening

this artificial example, for each fixed (x1, x3) = (x0
1
, x0

3
), the function y(x0

1
, x2, x0

3
)

is symmetric about x2 = 1/2 and is constant with integral zero with respect to x2.

Indeed, any function with constant average y(xS , x−S) over the inputs x−S would also

have constant mean u(xS) with respect to the inputs xS .

Returning to the specifics of this example, the variance of y(X1, X2, X3) is

v = Var ((X1 + 1) cos(πX2))

= E
[
(X1 + 1)2 cos2(πX2)

]
= E

[
(X1 + 1)2

]
E

[
(cos2(πX2)

]
=

7

6

which gives the main effect sensitivities

S 1 =
Var(u1(X1))

v
= 0 = S 3

while

S 2 =
Var(3

2
cos(πX2))

v
=

27

28
≈ 0.964 .

The zero main effect for x1 is, perhaps, unexpected. It is due to the fact that the

integral of y(x1, x2) over the x2-term is zero; any other function with a centered

interaction term would also have S 1 = 0, e.g., y = x1(x2 − 0.5). The large value of

0.964 for the main effect of x2 may also not be consistent with the readers’ intuition;

this large value illustrates again that S i depends on every xi term that is part of the

y(x) formula, not merely additive terms β × xi.

To continue the example, we compute the total effects for each input using the

formula (7.4.31). First, note that

u−1(x−1) = u23(x2, x3) =

∫ 1

0

y(x1, x2, x3)dx1 = 1.5 cos(πx2)

and similarly

u−2(x−2) = u13(x1, x3) = 0 and u−3(x−3) = u12(x1, x2) = (x1 + 1) cos(πx2)

so

vu
−1 = Var(1.5 cos(πx2)) = 9/8, vu

−2 = 0, and vu
−3 = v = 7/6

yielding

T1 =
v − vu

−1

v
=

6

7

(
7

6
− 9

8

)
=

1

28
≈ 0.036, T2 = 1, and T3 = 0.

The result that T3 = 0 implies that S 13 = 0 = S 23 = S 123 as one expects from

the functional form of y(x). Indeed the remaining interaction must be S 12 = T1 −
S 1 == 1/28 from (7.4.20). This small value for the S 12 interaction may, again, not

7.5 Estimating Effect Plots and SIs 185

be consistent with the reader’s intuition but shows that once the main effect functions

are subtracted from u12(x1, x2), there is very little variability in y12(x1, x2).

Indeed, it is interesting to note that for this example the variances of the cen-

tered and uncentered functions y12(x1, x2) and u12(x1, x2), respectively, can be quite

different. In this case calculation gives

y12(x1, x2) = (x1 − 0.5) cos(πx2)

so that v12 = Var(y12(X1, X2)) = 1/24 ≪ 7/6 = Var(u12(X1, X2)) = vu
12

. In general,

the 2-d sensitivity index for inputs xi and x j, S i j, subtracts the associated main effect

functions which can greatly reduce the variance of the averaged function values. �

7.5 Estimating Effect Plots and Global Sensitivity Indices

This section will describe how quadrature, empirical (plug-in) Bayesian, and fully

Bayesian methods can be used to estimate effect plots and main effect and total

effect sensitivity indices based on training data, (xi, y(xi)), i = 1, . . . , n. With one

exception, these methods assume that y(x) can be modeled as a realization of a

(non-stationary) Gaussian process

Y(x) =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

x
k j

j
+ Z(x) ≡

p∑

ℓ=1

βℓ fℓ(x) + Z(x) (7.5.1)

which of the regression plus stationary process form, where the {βk1 ...kd
}k1...kd

are

unknown regression coefficients, the powers k1, . . . kd are specified, and Z(x) is a

stationary Gaussian process with separable parametric correlation function R(·), i.e.,

Cov (Z(xr), Z(xs)) =

d∏

j=1

R(xr j − xs j| ψ j) (7.5.2)

where ψ j is the unknown parameter associated with the jth input, possibly a vector.

For example, the methods described below can be applied to both the Gaussian

correlation function,

RG(h | ψ) = exp
[
−ψ h2

]
ψ > 0 , (7.5.3)

and the cubic correlation function

RC(h| ψ) =



1 − 6
(

h
ψ

)2
+ 6

(|h|
ψ

)3
, |h| ≤ ψ

2
;

2

(
1 − |h|

ψ j

)3

,
ψ

2
≤ |h| ≤ ψ ;

0, ψ < |h| ,

(7.5.4)

186 7 Sensitivity and Screening

where ψ > 0. Separable Bohman correlation functions can also be implemented in

this approach and, in priniple the Matern and power exponential functions.

7.5.1 Estimated Effect Plots

Given output function y(x) = y(x1, . . . , xd), recall that the main effect plot for input

xq, q ∈ {1, . . . , d}, is the plot of (xq, uq(xq)) where

uq(xq) =

∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd)
∏

ℓ,q

dxℓ

=

∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd) dx− j = EX

[
y(X)|Xi = xq

]
(7.5.5)

is the average value of y(x) when the qth input is fixed and the averaging is over all

possible values for inputs x j, j , q. The alternate notation dx− j indicates integration

over all inputs except x j and the expectation notation emphasizes that X can also

be thought of as random vector. More generally, one can examine changes in the

average value of y(x) when two or more inputs are fixed, e.g., joint effect plots are

3d plots of (xq, xv, uqv(xq, xv)) where

uqv(xq, xv) =

∫ 1

0

· · ·
∫ 1

0

y(x1, . . . , xd)
∏

ℓ,q,v

dxℓ

Two methods of estimating uq(xq) based on training data will be described. The

first is a quadrature-based estimation and the second is a Bayesian method. Both

methods can be extended to estimate the joint- or higher-effect function uqv(xq, xv).

A naive quadrature estimator of uq(xq) uses the definition of the integral

ûq(xq) =
∑

∆⋆

ŷ(xstar
1 , xstar

q−1, xq, xstar
q+1, xstar

d) Vol(∆⋆)

where ŷ(x) is a predictor of y(x) and the sum is over a set of disjoint hyperrectanges

∆⋆ that partition the (x1, xq−1, xq+1, xd) domain and (xstar
1
, xstar

q−1
, xstar

q+1
, xstar

d
) ∈ ∆⋆.

Here ŷ(x) can be any predictor of y(x), be it based on regression, neural net or those

described Chapter 3.

A more sophisticated quadrature method is possible when the outputs y(x) can

be modeled as a realization of the GP (7.5.1) with separable correlation function

(7.5.2). In this case, recall that an EBLUP of y(x) based on estimated correlation

parameter (ψ̂1, . . . , ψ̂d) has the form

ŷ(x) = d0(x) +

n∑

i=1

di

d∏

ℓ=1

R(xℓ − xiℓ | ψ̂ℓ) (7.5.6)

7.5 Estimating Effect Plots and SIs 187

where

d0(x) =

mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

x
k j

j

when viewed as a function of the input x, where the elements of β̂ are obtained from

the weighted least squares estimator of β that is based on the GP model (7.5.1). In

this case the

ûq(xq) =

∫ 1

0

· · ·
∫ 1

0


mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

x
k j

j
+

n∑

i=1

di

d∏

j=1

R(x j − xi j | ψ̂ℓ)


∏

j,q

dx j

=

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd
x

k j

q

∏

j,q

(
k j + 1

)−1

+

n∑

i=1

di R(xq − xiq| ψ̂q)
∏

j,q

∫ 1

0

R(x j − xi j| ψ̂ j) dxℓ. (7.5.7)

In some cases the one-dimensional integrals in (7.5.7) will have closed form expres-

sions. For example, for the Gaussian correlation function (2.4.6),

∫ 1

0

R
(
x j − xi j| ψ̂ j

)
dx j =

∫ 1

0

exp{−ψ̂ j(x j − xi j)
2} dx j

=

√
2π
√
ψ j

{
Φ

(
ψ j(1 − xi j)

)
−Φ

(
ψ j(0 − xi j)

)}

when expressed in terms of the standard normal cumulative distribution function.

A second method of estimating the main effect function uq(xq) is Bayesian (or

empirical/plug-in Bayesian if one uses plug-in estimates of model parameters in-

stead of assessing them by draws from their posterior distribution given the data)

(see Oakley (2009), Moon (2010), Svenson (2011)). The idea of the method is to

replace y(·) by the GP process Y(·) in the defining integral (7.5.5) of uq(xq). Under

mild conditions,

Uq(xq) =

∫ 1

0

· · ·
∫ 1

0

Y(x1, . . . , xd)
∏

j,q

dx j = EX

[
Y(X) | Xq = xq

]

is also a Gaussian process. Intuitively the integral is also GP because Uq(xq) is

approximately a linear combination of Y(x) values and, for multivariate normal ran-

dom variables, this linear combinations of multivariate normal random variables

have a multivariate normal distribution (see Yaglom (1962) or Adler (1990)). For-

mally the mean, variance, and covariance of Uq(xq) can be obtained by interchang-

ing appropriate integrals as follows. The mean of Uq(xq) is

188 7 Sensitivity and Screening

EP

[
Uq(xq)

]
= EP

[
EX[Y(X) | Xq = xq]

]

= EX

[
EP[Y(X)] | Xq = xq

]

= EX

[
β0] | Xq = xq

]
= β0, (7.5.8)

the covariance function is

Covp[Uq(xq),Uq(x⋆q)] = Covp

[∫
· · ·

∫
Y(x) dx−q,

∫
· · ·

∫
Y(x⋆) dx⋆−q

]
,

= σ2
Z

∫
· · ·

∫
R(x, x⋆ | ψ) dx−q dx⋆−q

= σ2
Z

∏

j,q

[∫ 1

0

∫ 1

0

R(x j, x⋆j | ψ j) dx j dx⋆j

]
R(xq, x⋆q | ψq)

(7.5.9)

with special case, the Uq process variance

σ2
U = Covp[Uq(xq),Uq(xq)] = σ2

Z

∏

j,q

[∫ 1

0

∫ 1

0

R(x j, x⋆j | ψ j) dx jdx⋆j

]
×1 (7.5.10)

The double integrals in (7.5.9) and (7.5.10) can be evaluated in close-form for the

Gaussian and several other correlation families.

Returning to the statement of the Bayesian estimator of uq(xq), suppose that out-

put has been collected at the (training data) inputs x1, . . . , xn and Yn = (Y(x1), . . . ,

Y(xn) is the model for the observed outputs. A Bayes estimator of uq(xq) is the

posterior mean of the Uq(xq) given the training data, i.e.,

ûq(xq) = Ep

[
Uq(xq) | Yn

]
(7.5.11)

where the subscript p in the expectation means that it with respect to the Y(x) pro-

cess. When the model parameters are unknown and not assessed by a prior distribu-

tion, ûq(xq) will depend on these parameter values. Empirical Bayes estimators of

uq(xq) estimate the parameters from the data, as in Chapter 3, and plug these values

into the formula for ûq(xq).

To give a specific example suppose that

Y(x) = β0 + Z(x)

is the assumed model for the output y(x) where β0 is unknown, and Z(x) is a mean

zero stationary GP with unknown variance σ2
Z
, and separable covariance function

Covp[Y(x1), Y(x2)] = σ2
ZR(x1 − x2; θ) = σ2

Z

d∏

j=1

R(x1
j − x2

j | ψ j). (7.5.12)

7.5 Estimating Effect Plots and SIs 189

which is known up to a vector of unknown parameters ψ = (ψ1, . . . , ψd). Again, the

subscript p on the covariance operator indicates an expectation with respect to the

process. Now suppose that output has been collected at the inputs x1, . . . , xn and it

desired to predict Uq(·) at x0. It can be shown that

(
Uq(x0), Y(x1), . . . , Y(xn

)
=

(
Uq(x0),Yn

)

has the joint multivariate normal distribution

(
Uq(x0)

Yn

)
∼ N1+n

[(
β0

1nβ0

)
,

(
σ2

u Σnu

Σnu Σnn

)]
,

say, where all components of the covariance can depend on (β0, σ
2
Z
,ψ). In particular,

σ2
U

is given in (7.5.10), Σun =
(
Covp(Uq(x0), Y(xi))

)
is 1 × n vector that can be

calculated by an interchange of integrals (see Chen et al (2005, 2006); Svenson

et al (2013) give formulas the cases of Gaussian, cubic, and Bohman correlation

functions), Σnu = Σ
⊤
nu, and Σnn is the n × n matrix of variances and covariances of

the Yn values given in (7.5.23). Thus, given the model parameters (β0, σ
2
Z
,ψ) and

using the formula (B.1.3) for the conditional multivariate normal distribution

Ep

[
Uq(xq) | Yn, (β, σZ ,ψ)

]
= β0 + ΣunΣ

−1
nn (Yn − 1nβ0) . (7.5.13)

Either plug-in estimates of the unknown parameters can be inserted into (7.5.13) or,

if a prior has been specified for (β0, σ
2
Z
,ψ), then a fully Bayesian estimate of uq(xq)

is

ûq(xq) = E[
(β0,σ

2
Z
,ψ) | Yn]

[
β0 + ΣunΣ

−1
nn (Yn − 1nβ0) .

]
(7.5.14)

where the expectation is with respect to the posterior of the parameters given the

calculated output data.

tjs note-I have essentially stopped in 7.5 right here

Example 7.5 [Continued] TBD follow up Example 7.4 with d = 5 Effect plots

using both quadrature and process-quadature methods EBLUP methods

7.5.2 Estimation of Sensitivity Indices

The idea of this method use to replace y(x) in the variance expressions v, vu
i
, and vu

−i
,

i = 1, . . . , n, by a predictor ŷ(x), and integrate the appropriate expectation expres-

sions to estimate the variances. A naive form of this method estimates the uncentered

effect function uQ(xQ) by

190 7 Sensitivity and Screening

ûQ(xQ) =

∫

[0,1]|Q|
ŷ(x1, . . . , xd)

∏

i<Q

dxi =
1

n

n∑

ℓ=1

ŷ(xQ, x−Q,ℓ)wℓ

where ŷ(xQ, x−Q,ℓ) is a REML or other EBLUP of y(xQ, x−Q,ℓ); the weights {wℓ} and

points {x−Q,ℓ} depend on the selected quadrature method.

When the correlation function R(·| ψ) of the process is separable, a more accu-

rate method uses the fact that ŷ(x) can be reduced to a product of one-dimensional

integrals and these can integrated explicitly for certain correlation functions. The

statistical software JMP uses this method to estimate sensitivity indices for the sep-

arable Gaussian and cubic correlation functions. The steps are sketched below.

Consider prediction based on the stationary Gaussian process model

Y(x) = β0 + Z(x) (7.5.15)

where β0 is unknown and Z(x) is a stationary Gaussian process on [0, 1]d having

zero mean, variance σ2
Z
, and has separable correlation function

d∏

ℓ=1

R(hℓ| ψℓ)

where ψℓ is the (vector of) parameter(s) associated with the ℓth input. Two specific

examples of this structure are based on the one-dimensional Gaussian (2.4.6) or the

cubic correlation functions (2.4.9).

Recall that, when viewed as a function of the (new) input vector x, EBLUPs of

y(x) based on (7.5.15) have the form

ŷ(x) = d0 +

n∑

i=1

di

d∏

ℓ=1

R(x0ℓ − xiℓ | ψ̂ℓ) (7.5.16)

where d0 = β̂0 is the weighted least squares estimator of β0 that is stated below

equation below (3.3.4) for an arbitrary set of linear regressors.

Consider estimation of the total variance

V = Var (y(X)) = E
{
y2 (X))

}
− (E {y (X))})2 = E

{
y2 (X))

}
− (y0)2 (7.5.17)

which requires estimating two expectation terms.

Starting with estimation of (y0)2, substituting (7.5.16) into the definition of y0

yields

7.5 Estimating Effect Plots and SIs 191

ŷ0 =

∫ 1

0

· · ·
∫ 1

0

ŷ(x) dx

= d0 +

n∑

i=1

di

∫ 1

0

· · ·
∫ 1

0

d∏

ℓ=1

Rxℓ − xiℓ| ψ̂ℓ)
d∏

ℓ=1

dxℓ

= d0 +

n∑

i=1

di

d∏

ℓ=1

∫ 1

0

R(xℓ − xiℓ | ψ̂ℓ) dxℓ

= d0 +

n∑

i=1

di S (xi, ψ̂),

where

S (xi, ψ̂) =

d∏

ℓ=1

∫ 1

0

R(xℓ − xiℓ | ψ̂ℓ) dxℓ (7.5.18)

Often the one-dimensional integrals in (7.5.18) will have closed form expressions.

For example, for the Gaussian correlation function (2.4.6), each term of the product

is

∫ 1

0

R
(
x − xiℓ| ψ̂

)
dx =

∫ 1

0

exp{−ψ(x − xiℓ)
2} dx

=

√
2π
√
ψ
{Φ (ψ(1 − xiℓ)) −Φ (ψ(0 − xiℓ))}

when expressed in terms of the standard normal cumulative distribution function.

Returning to the first term in (7.5.17), the squared expectation is estimated by

Ê
{
y2 (X))

}
=

∫ 1

0

· · ·
∫ 1

0

d0 +

n∑

i=1

di

d∏

ℓ=1

R(xℓ − xiℓ | ψ̂ℓ)


2

dx (7.5.19)

The squared integrand in (7.5.19) is

d2
0 +

n∑

i=1

d2
i

d∏

ℓ=1

R2(xℓ − xiℓ| ψ̂ℓ)

+ 2 d0

n∑

i=1

di

d∏

ℓ=1

R(xℓ − xiℓ| ψ̂ℓ)

+ 2
∑

1≤q<i≤n

dqdi

d∏

ℓ=1

R(xℓ − xqℓ | ψ̂ℓ)R(xℓ − xiℓ| ψ̂ℓ) . (7.5.20)

The integrals of the terms in (7.5.20) can be expressed as products of one dimen-

sional integrals. For example, the integral of the 3rd term of (7.5.20) is

192 7 Sensitivity and Screening

2 d0

n∑

i=1

di S (xi, ψ̂)

Similarly, the integral of the final term in (7.5.20) is

2
∑

1≤q<i≤n

dqdi D(xq, xi,ψ)

where

D(xq, xi,ψ) =

d∏

ℓ=1

∫ 1

0

R(xℓ − xqℓ | ψ̂ℓ)R(xℓ − xiℓ| ψ̂ℓ)dx0ℓ .

Differencing these component estimators we obtain

v̂ = d2
0 +

n∑

i=1

d2
i D(xi, xi, ψ̂) + 2 d0

n∑

i=1

di S (xi, ψ̂)

+2
∑

1≤q<i≤n

dqdi D(xq, xi, ψ̂)

−
d0 +

n∑

i=1

di S (xi, ψ̂)


2

,

which can be further simplified. The terms vu
i

and vu
−i

can be calculated using similar

strategies.

7.5.3 Process-based Estimators of Sensitivity Indices

The next method of estimating the S i and Ti sensitivity indices is Bayesian or

empirical/plug-in Bayesian depending on whether unknown parameters are mod-

eled hierarchically or estimated (see Oakley (2009), Moon (2010), Svenson (2011)).

The idea of the method is to replace y(·) by the process Y(·) in the relevant integrals

that involve uQ(xQ) functions and use the fact that for Gaussian process models,

Y(x), the integral

UQ(xQ) ≡
∫ 1

0

· · ·
∫ 1

0

Y(x1, . . . , xd)
∏

i<Q

dxi = E
[
Y(X)|XQ = xQ

]
,

is (under mild conditions) a process for which the joint distribution of UQ(xQ) and

the vector of Y(·) values at the training data sites, is multivariate normal. Heuristi-

cally, UQ(xQ) is approximately a linear combination of Y(x) values and, for mul-

tivariate normal random variables, this linear combination and the responses at the

training data sites will have a multivariate normal distribution (in the limit-see Ya-

glom (1962) or Adler (1990) Yaglom?? Adler??).

7.5 Estimating Effect Plots and SIs 193

Specifically suppose that output has been collected at the inputs x1, . . . , xn and

that Y(x) is a stationary Gaussian process with unknown mean β0, unknown variance

σ2
Y

and separable covariance function

Covp[Y(x1), Y(x2)] = σ2
Y R(x1 − x2; θ) = σ2

Y

d∏

ℓ=1

R(x1
ℓ , x2

ℓ ;ψℓ) (7.5.21)

where ψ = (ψ1, . . . , ψd) is the vector of unknown parameters of the correlation

function. Then it can be shown that

(
UQ(xQ), Y(x1), . . . , Y(xn

)
=

(
UQ(xQ), Yn)

has the joint multivariate normal distribution

N1+n

[(
β0

1nβ0

)
,

(
σ2

u Σnu

Σnu Σnn

)]
,

say, where Σun is 1 × n, Σnu = Σ⊤nu, and Σnn is n × n can be calculated in terms

of the unknown model parameters (β0, σ
2
Y
,ψ). Using these moment expressions, the

posterior mean of the variance of UQ(xQ) given the training data,

V̂u
Q = EP

{
Var

[
UQ(xQ)

] | Yn = yn} , (7.5.22)

is an estimator of vu
Q

that can be calculated explicitly and hence the main effect and

total effect sensitivity indices can be estimated by plug-in of the unknown parame-

ters or by averaging V̂u
Q

over draws from the posterior distribution of the parameters

given Yn.

New from here

This section presents Bayesian and plug-in Bayesian approaches for estimating

sensitivity indices in the case where the observed output at input site x ∈ X can

be modeled as a draw, y(x), from a (smooth) Gaussian stochastic process, Y(x),

possibly corrupted by additive noise, say numerical. The function y(x) is regarded

as the true output. In this section the process Y(x) need not be stationary but is

assumed to be separable with covariance

Covp[Y(xi), Y(xk)] = σ2R(xi, xk | ψ) = σ2

d∏

j=1

R(xi j, xk j| ψ j) (7.5.23)

where σ2 is the process variance and R(·, ·| ψ j) is known up to an unknown (vector

of) parameter(s) ψ j. Here, and below, Covp[·, ·] and Ep[·] denote covariance and

expectation with respect to the process Y(x) to distinguish them from expectations

Eg[·] with respect X. As in Section ??, this approach allows estimation of sensitivity

indices from runs based on an arbitrary design.

To simplify the expressions derived below, this section makes the following ad-

ditional assumptions. First, not only has the input space been scaled to be [0, 1]d,

194 7 Sensitivity and Screening

but the weight function g(·) is uniform on [0, 1]. Second, we take the process Y(x)

to have mean

f⊤(x)β = Ep [Y(x)] =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

x
k j

j
. (7.5.24)

As Kaufman et al (2011) demonstrate, a non-constant mean is essential when using

compactly supported correlations to emulate computer simulator codes efficiently

for large designs; the polynomial mean (7.5.24) is general enough to account for a

wide variety of “large scale” trends. Third, while nothing in the calculations below

requires that the process be stationary, the specific correlation functions used in the

sample calculations all satisfy the stationary condition

R(xi j, xk j| ψ j) = R(xi j − xk j| ψ j).

Finally, to allow a greater breath of applications, it is assumed that the observed

output, zsim(x), from the simulator runs is the true simulator output y(x) plus noise,

possibly numerical. The model for zsim(x) is

Zsim(x) = Y(x) + ǫsim(x), (7.5.25)

where ǫsim(x) is a white noise process with mean zero and variance σǫ that is inde-

pendent of Y(x). The term ǫsim(x) can be thought of as a means of explicitly model-

ing non-deterministic behaviour of the computer output or of enhancing numerical

stability in the estimation of the correlation parameters. For deterministic outputs,

ǫsim(x) can be set to zero in the formulae below.

Assuming that evaluations are made at inputs x1, . . . , xn, the n × 1 vector of

observed outputs is viewed as a realization of the stochastic process

Z sim = (Zsim(x1), . . . , Zsim(xn))⊤

which has mean vector Fβ with F =
[
f (x1), . . . , f (xn)

]⊤
and covariance matrix

ΣZ
sim = σ

2R + σ2
ǫ In = σ

2 (R + aIn)

with a = σ2
ǫ /σ

2, where the (i, k)th element of the n × n matrix R is R(xi, xk;ψ) and

I is the n × n identity matrix.

7.5.4 Process-based estimators of sensitivity indices

The sensitivity indices (7.4.19) and (7.4.23) are defined in terms of the true simulator

output y(x). Bayesian estimation of these quantities replaces y(·) by the process Y(·)
in the relevant definitions resulting, for example, in the random uncorrected effect

function

7.5 Estimating Effect Plots and SIs 195

Vu
Q = Varg

[
Eg[Y(X)|XQ]

]

for Q ⊆ {1, . . .d}. A Bayesian estimator of vu
Q

is the posterior mean of Vu
Q

given the

observed code runs zsim; that is,

v̂u
Q = EP

[
Vu

Q| Z sim = zsim

]
. (7.5.26)

where EP [· | Z sim] denotes the conditional expectation with respect to the process

Y(·) given Z sim. For Gaussian process models, the joint distribution of the integrated

process, Vu
Q

, and Z sim is multivariate normal; this allows the posterior expected

value (7.5.26) of the integrated process given the training data to be calculated ex-

plicitly.

A formula for (7.5.26) is presented in the following theorem. The proof of this

result is rather long and technical and the details can be found in the Supplementary

Material. The expression for (7.5.26) assumes that all Gaussian Process parameters

are known. In the fully Bayesian approach to estimation, priors are placed on the

unknown parameters and (7.5.26) is averaged over draws from the posterior distri-

bution of parameters given Z sim. In the empirical Bayesian approach, estimates of

the unknown parameters are plugged into the (7.5.26) formula. The notation in The-

orem 7.1 is given in a style that facilitates function calls in a computer program. In

particular, it uses the following notation:

S1k(x;ψ) =

∫ 1

0

wkR (w, x| ψ) dw, k = 0, 1, 2, . . . ,

S2(x1, x2;ψ) =

∫ 1

0

R(w, x1| ψ)R(w, x2| ψ) dw,

D(ψ) =

∫ 1

0

∫ 1

0

R(w, x| ψ) dx dw,

m1(β) =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

(
k j + 1

)−1
,

m2(β) =
∑

k1,...kd

∑

k′
1
,...k′

d

βk1,...kd
βk′

1
,...k′

d

×

∏

j<Q

(
k j + 1

) (
k′j + 1

)

−1 

∏

ℓ∈Q

(
kℓ + k′ℓ + 1

)

−1

.

Theorem 7.1. Assume that the true simulator output, y(x) can be modeled by

a stationary Gaussian process Y(·) with mean and covariance function of the

form (7.5.24) and (7.5.23), respectively. Also assume that the observed output zsim

at the training data sites, is modeled by a process Zsim(x) satisfying (7.5.25). For a

fixed Q ⊆ {1, . . .d},

196 7 Sensitivity and Screening

v̂u
Q = EP

{
Vu

Q| Z sim = zsim

}

=


σ2

Y

∏

j<Q

D(ψ j) − trace

[(
ΣZ

sim

)−1
C

]

+

{
m2(β) −m12(β) + 2

(
v⊤ −m1(β)q⊤

) (
ΣZ

sim

)−1 (
zsim − F⊤β

)

+
(
zsim − F⊤β

)⊤ (
ΣZ

sim

)−1 (
C − qq⊤

) (
ΣZ

sim

)−1 (
zsim − F⊤β

)}

−


σ2

Y

d∏

j=1

D(ψ j) − trace

[(
ΣZ

sim

)−1
qq⊤

]
, (7.5.27)

where q is the n × 1 vector with ith element

qi = q(xi,ψ) = σ2

d∏

j=1

S10(xi j;ψ j), 1 ≤ i ≤ n,

C is the n × n matrix with (i, k)th element

Cik = σ
4
∏

j<Q

S10(xi j;ψ j) S10(xk j;ψ j)
∏

j∈Q
S2(xi j, xk j;ψ j), 1 ≤ i, k ≤ n ,

v is the n × 1 vector with ith element

v(xi, β,ψ, β) =

σ
2
∏

j<Q

S10

(
xi j;ψ j

)


×
mk1∑

k1=0

. . .

mkd∑

kd=0


βk1...kd

∏

j<Q

(
k j + 1

)−1 ∏

ℓ∈Q
S1kℓ (xhℓ;ψℓ)


, 1 ≤ i ≤ n,

Proof. The proof of Theorem 1 involves three steps: (i) the derivation of the

distribution of the process UQ(xQ) ≡ Eg[Y(X)|XQ = xQ]; (ii) the determination of

the conditional distribution of [UQ(xQ)| Z sim]; and (iii) obtaining an expression for

EP

[
Varg

(
UQ(xQ)

) | Z sim

]
. The details are given in the Supplementary Material.

The estimate v̂ of the total variance v is given by (7.5.27) for Q = {1, . . . , d}. The

main effect sensitivity index S j in (7.4.23) for the individual input x j is estimated

by

Ŝ j = v̂u
j /̂v (7.5.28)

where v̂u
j

is obtained from (7.5.27) with Q = { j}. The total effect sensitivity index is

estimated by

T̂ j = (̂v − v̂u
− j)/̂v, (7.5.29)

where v̂u
− j

is obtained from (7.5.27) with Q = {1, . . . , i − 1, i + 1, . . . , d}.
Given the model parameters, all components of v̂u

Q
are specified above except

the integrals S1k, D, S2, which depend on the user-selected correlation function

R(·, ·| ψ). Formulas for these integrals are stated next for the Gaussian and Bohman

7.5 Estimating Effect Plots and SIs 197

correlation functions and, in the Supplementary Material, for the cubic correlation

function R(w, x| ψ) = RC(w − x| ψ) for ψ > 0 where

RC(h| ψ) =



1 − 6
(

h
ψ

)2
+ 6

(|h|
ψ

)3
, |h| < ψ

2
;

2
(
1 − |h|

ψ

)3
,

ψ

2
≤ |h| < ψ;

0, ψ ≤ |h| .

7.5.5 Formulae for the Gaussian correlation function

For the Gaussian correlation function, R(w, x| ψ) = RG(w − x| ψ) where

RG(h| ψ) = exp
[
−ψh2

]
,

where ψ > 0. A formula for S1k can be derived using results of Dhrymes (2005) for

the moments of a truncated normal random variable. Application of this result gives

S1k(x;ψ) =

∫ 1

0

wk exp[−ψ(w − x)2] dw

=

√
π

ψ

Φ
(√

2ψ(1 − x)
) k∑

r=0

(
k

r

)
xk−r(2ψ)−r/2Ih1

r

− Φ
(
−x

√
2ψ

) k∑

r=0

(
k

r

)
ηk−r(2ψ)−r/2Ih0

r

 (7.5.30)

where h0 = −x
√

2ψ and h1 = (1− x)
√

2ψ, while Ih
r is defined recursively by Ih

0
= 1,

Ih
1
= −φ(h)/Φ(h), and for r ∈ {2, 3, 4, . . .} by

Ih
r =

1

Φ (h)

[
−hr−1φ(h) + (r − 1)Ih

r−2

]
, (7.5.31)

where φ(·) denotes the probability density function (pdf) of the standard normal

distribution. In particular, S10(x;ψ) becomes

S10(x;ψ) =

∫ 1

0

exp
[
−ψ(w − x)2

]
dw

=

√
π

ψ

[
Φ

(√
2ψ(1.0 − x)

)
−Φ

(
−x

√
2ψ

)]
.

Formulae for S2 and D are

198 7 Sensitivity and Screening

S2(x1, x2;ψ) =

∫ 1

0

exp[−ψ(w − x1)2] exp[−ψ(w − x2)2] dw

= exp

[
−1

2
ψ(x1 − x2)2

]
S10

(
x1 + x2

2
; 2ψ

)
,

D(ψ) =

∫ 1

0

∫ 1

0

exp
[
−ψ(w − x)2

]
dx dw

=
1

ψ

[√
2πφ

(√
2ψ

)
− 1

]
+

√
π

ψ

[
2Φ

(√
2ψ

)
− 1

]
.

7.5.6 Formulae using the Bohman correlation function

For the Bohman correlation function, R(w, x| ψ) = RB(w − x| ψ) where

RB(h| ψ) =

{ (
1 − |h|

ψ

)
cos

(
π|h|
ψ

)
+ 1

π
sin

(
π|h|
ψ

)
, |h| < ψ;

0, |h| ≥ ψ

with ψ > 0. The integrals S10, S1k, S2, and D are as follows. Letting l∗ = l∗(x) =

min (π, xπ/ψ) and u∗ = u∗(x) = min (π, (1.0 − x) π/ψ) ,

S10(x;ψ) =
1

u − l

{
4ψ

π2
− 2ψ

π2
cos(l∗(x)) − 2ψ

π2
cos(u∗(x))

+

{(
ψ

π
− ψ l∗(x)

π2

)
sin(l∗(x)) +

(
ψ

π
− ψ u∗(x)

π2

)
sin(u∗(x))

}
.

For the integral S1k(x;ψ), let l∗ = max(0, x − ψ) and u∗ = min(1, x + ψ), then

S1k(x;ψ) =

∫ 1

0

wkR (w, x, ;ψ) dw

=

∫ x

l∗
wk

{(
1 − x − w

ψ

)
cos

(
π(x − w)

ψ

)
+

1

π
sin

(
π(x − w)

ψ

)}
dw

+

∫ u∗

x

wk

{(
1 − w − x

ψ

)
cos

(
π(w − x)

ψ

)
+

1

π
sin

(
π(w − x)

ψ

)}
dw

= T (x,−1, l∗, η) + T (−x,+1, η, u∗) , say,

where

7.5 Estimating Effect Plots and SIs 199

T (d, s, a, b) =

∫ b

a

wk

{(
1 − d + sw

ψ

)
cos

(
π(d + sw)

ψ

)
+

1

π
sin

(
π(d + sw)

ψ

)}
dw

=

(
1 − d

ψ

)
cos

(
dπ

ψ

) (
ψ

πs

)k+1

P1
(
k, a′, b′

)

−
(
1 − d

ψ

)
sin

(
dπ

ψ

) (
ψ

πs

)k+1

P2
(
k, a′, b′

)

− s

ψ
cos

(
dπ

ψ

) (
ψ

πs

)k+2

P1
(
k + 1, a′, b′

)

+
s

ψ
sin

(
dπ

ψ

) (
ψ

πs

)k+2

P2
(
k + 1, a′, b′

)

+
1

π
sin

(
dπ

ψ

) (
ψ

πs

)k+1

P1
(
k, a′, b′

)

+
1

π
cos

(
dπ

ψ

) (
ψ

πs

)k+1

P2
(
k, a′, b′

)
,

after additional algebra, where a′ = saπ/ψ, a′, b′ = sbπ/ψ and P1 and P2 are

defined recursively as
P1

(
k, a′, b′

)

=

{
sin (b′) − sin (a′) , k = 0;

(b′)k sin (b′) − (a′)k sin (a′) − k P2 (k − 1, a′, b′) , k ≥ 1,

and
P2

(
k, a′, b′

)

=

{
cos (a′) − cos (b′) , k = 0;

(a′)k cos (a′) − (b′)k cos (b′) + k P1 (k − 1, a′, b′) , k ≥ 1.

The integral for D(ψ) is defined piecewise by

D(ψ) =


4ψ

π2 +
2ψ2

π2 − 4ψ

π2 (ψ − 1.0) , 0 < ψ < 1.0
4ψ

π2 +
2ψ2

π2

{
1 +

(
1.0−ψ
ψ

)
cos

(
π
ψ

)
− 3

π
sin

(
π
ψ

)}
, 1.0 ≤ ψ.

To calcuate the integral S2(x1, x2;ψ), the w regions of [0, 1] for which R(w, x1;ψ)R(w, x2;ψ) ,

0 must be identified. These regions will depend on the relationship between |x1 − x2|
and ψ. The following formulae assume, without loss of generality, that x1 < x2.

There are different expressions for S2 depending on whether 2ψ ≤ |x1 − x2|,
ψ ≤ |x1 − x2| < 2ψ, or |x1 − x2| < ψ. In the Supplementary Material, these inte-

grals are simplified and shown to be as follows.

Case 1: For (x1, x2) satisfying |x1 − x2| ≥ 2ψ, R(w, x1;ψ)R(w, x2;ψ) = 0 for all

w ∈ [0, 1]; hence

S2(x1, x2;ψ) = 0 .

Case 2: For (x1, x2) satisfying ψ ≤ |x1 − x2| < 2ψ,

200 7 Sensitivity and Screening

S2(x1, x2;ψ) =

∫ x1+ψ

x2−ψ

{(
1 − w − x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1 − (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw .

Case 3: For (x1, x2) satisfying |x1 − x2| < ψ, first let l∗ = max (0, x1 − ψ) and

u∗ = min (1, x2 + ψ), then

S2(x1, x2;ψ) =

∫ x1

l∗

{(
1 − x1 − w

ψ

)
cos

(
π(x1 − w)

ψ

)
+

1

π
sin

(
π(x1 − w)

ψ

)}

×
{(

1 − (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw

+

∫ x2

x1

{(
1 − x − x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1 − (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw

+

∫ u∗

x2

{(
1 − w − x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1 − w − x2

ψ

)
cos

(
π(w − x2)

ψ

)
+

1

π
sin

(
π(w − x2)

ψ

)}
dw .

7.6 Variable Selection

• Linkletter et al (2006)

• Moon et al (2012)

7.7 Chapter Notes

Some possible notes

7.7.1 Elementary Effects

• Pujols (2001) introduced a non − collapsing OAT design, i.e., projections of

input vectors from the OAT are not identical.

• Campolongo et al (2007) propose a criterion for spreadingthercompletetours

and use of |d j| = 1
n

∑r
i=1 |d j(x

j

1
)|

7.7 Chapter Notes 201

• Campolongo et al (2011) introduces radialOATdesigns that spreads starting

points using a Sobol´ sequence and differential ∆ for each inputs

7.7.2 Orthogonality of Sobol´ Terms

Among other authors, Van Der Vaart (1998) (Section 11.4) shows that any compo-

nent of (7.4.9), say yQ(XQ), where Q ⊂ {1, 2, . . . , d}, must have zero mean when

integrated with respect to any input Xi, with i ∈ Q, and any pair of terms in (7.4.9)

must be pairwise orthogonal. We give a proof of these two facts.

Lemma 7.1 For Q = { j1, . . . , js} ⊆ {1, . . . , d},
∫ 1

0

yQ(xQ) dx jk = 0 (7.7.1)

for any jk ∈ Q.

Proof: The proof proceeds by induction on the number of elements in Q. When

Q = { j}, say, then from (7.4.1), (7.4.2) and the definition of y0, (7.7.1) holds for

any main effect function y j(x j). Suppose that Q ⊆ {1, . . . , d} contains two or more

elements, and assume that (7.7.1) holds for all proper subsets of E ⊂ Q. Fix ℓ ∈ Q,

and let Q\ℓ denote the set difference of Q and {ℓ}, which is non-empty by definition

of Q. Partition the non-empty subsets of Q into the collection U+ of subsets E

that contain ℓ, and the collection U− of subsets E that do not contain ℓ; note that

Q\ℓ ∈ U−. Then by the definition (7.4.12) of yQ(xQ),

∫
yQ(xQ) dxℓ =

∫ uQ(xQ) −
∑

E⊂Q

yE(xE) − y0

 dxℓ

=

∫
uQ(xQ) dxℓ −

∑

E∈U+

∫
yE(xE) dxℓ (7.7.2)

−
∑

E∈U−

yE(xE) − y0 ,

where the third and fourth terms use the fact that their integrands do not depend on

xℓ (because ℓ < E for E ∈ U−).

By definition of uQ(xQ), the first term of (7.7.2) is

∫
uQ(xQ) dxℓ =

∫ ∫
y(xQ, x−Q) dxQ dxℓ = u Q\ℓ(xQ\ℓ).

The second term of (7.7.2) is zero since (7.7.1) holds for all proper subsets of Q by

assumption. This gives that (7.7.2) is

202 7 Sensitivity and Screening

∫
yQ(xQ) g(xℓ)dxℓ = u Q\ℓ(x Q\ℓ) − 0 −


∑

E∈U−;E,Q\ℓ

yE(xE) + y Q\ℓ(xQ\ℓ)

 − y0 ,

which is zero by definition of u Q\ℓ(xQ\ℓ). �

Notice that Lemma 7.7.2 implies that the mean of each yQ(XQ) with respect to

XQ is zero, i.e., E
{
yQ(XQ)

}
= 0 for any Q ⊆ {1, . . . , d}. This is a stronger form of

centering than that of uQ(XQ) by y0 which also satisfies E
{
uQ(xQ) − y0

}
= 0 but for

which
∫ 1

0

(
uQ(xQ) − y0

)
dx jk need not be zero for any jk ∈ Q.

Lemma 7.7.2 also implies that the orthogonality in (7.4.14) holds. Suppose that

(i1, . . . , is) , (j1, . . . , jt); pick any integer k that is in exactly one of (i1, . . . , is) or

(j1, . . . , jt) (there has to be at least one such integer), and integrate

∫ 1

0

· · ·
∫ 1

0

yi1,...,is
(xi1 , . . . , xis

) × y j1,..., jt (x j1 , . . . , x jt)
∏

ℓ

dxℓ = 0 (7.7.3)

in the order k and then over (i1, . . . , is) ∪ (j1, . . . , jt) \ {k} (in any order). The inner

integral is zero and thus (7.4.14) holds.

• Saltelli and his co-authors given numerous methods to estimate first order and

total Sobol’ indices)

• Helton & Storlie and co-authors describe smoothing and metamodel-based meth-

ods

• Kucherenko & Sobol recent works provide links between derivative-based mea-

sures and Sobol´ indices

• Other research that uses the emulation of the model output by a Gaussian process.

It seems that these works have already been done (perhaps differently?) in Oakley

& O’Hagan (2004), Chen et al. (2005) and Marrel et al. (2009)

Additional possible references

• W. Chen, R. Jin and A. Sudjianto: Analytical metamodel-based global sensi-

tivity analysis and uncertainty propagation for robust design. J. Mech. Des.

2005,127:875-86.

• S. DA VEIGA, F. WAHL and F. GAMBOA : Local polynomial estimation for

sensitivity analysis on models with correlated inputs. Technometrics, 51(4):452-

463, 2009.

• J.C. HELTON, J.D. JOHNSON, C.J. SALABERRY and C.B. STORLIE : Survey

of sampling-based methods for uncertainty and sensitivity analysis. Reliability

Engineering and System Safety, 91:1175-1209, 2006.

• T. HOMMA and A. SALTELLI : Importance measures in global sensitivity anal-

ysis of non linear models. Reliability Engineering and System Safety, 52:1-17,

1996.

• A. MARREL, B. IOOSS, B. LAURENT and O. ROUSTANT : Calculations of

the Sobol indices for the Gaussian process metamodel. Reliability Engineering

and System Safety, 94:742-751, 2009.

7.7 Chapter Notes 203

• J.E. OAKLEY and A. O’HAGAN : Probabilistic sensitivity analysis of complex

models : A Bayesian approach. Journal of the Royal Statistical Society, Series B,

66:751-769, 2004.

• A. SALTELLI : Making best use of model evaluations to compute sensitivity

indices. Computer Physics Communication, 145:280-297, 2002.

• A. SALTELLI, P. ANNONI, I. AZZINI, F. CAMPOLONGO, M. RATTO and

S. TARANTOLA : Variance based sensitivity analysis of model output. Design

and estimator for the total sensitivity index. Computer Physics Communication,

181:259-270, 2010.

• I.M. SOBOL and S. KUCHERENKO : Derivative based global sensitivity mea-

sures and their links with global sensitivity indices. Mathematics and Computers

in Simulation, 79:3009-3017, 2009.

• C.B. STORLIE and J.C. HELTON : Multiple predictor smoothing methods for

sensitivity analysis : Description of techniques. Reliability Engineering and Sys-

tem Safety, 93:28-54, 2008.

• C.B. STORLIE, L.P. SWILER, J.C. HELTON and C.J. SALABERRY : Imple-

mentation and evaluation of nonparametric regression procedures for sensitivity

analysis of computationally demanding models. Reliability Engineering and Sys-

tem Safety, 94:1735-1763, 2009.

• Saltelli et al (2000) provide a detailed and more recent detailed summary of SI

methods.

• definition of sensitivity indices for multivariate and function output (Campbell

(2001); Campbell et al (2005, 2006))

•
•

7.7.3 Sensitivity Index Estimators for Regression Means

Suppose it is desired to base prediction on the regression plus stationary Gaussian

process model

Y(x) =

nk1∑

k1=0

. . .

nkd∑

kd=0

βk1...kd

d∏

i=1

x
ki

i
+ Z(x), (7.7.4)

using either the quadrature or the Bayesian methods of Sections 7.5.2 or 7.5.3. Here

the powers k1,. . . , kd are known, {βk1...kd
}k1...kd

are unknown, and Z(·) is a stationary

Gaussian process on [0, 1]d having zero mean, variance σ2
Z
, and separable correla-

tion function
d∏

ℓ=1

R(hℓ| ψℓ)

whereψℓ is the (vector of) parameter(s) associated with the ℓth input. This model has

several advantages. It is sufficiently simple that analytic expressions for quadrature-

based and Bayesian sensitivity index estimators can be computed. It is general

204 7 Sensitivity and Screening

enough to account for almost any large scale trend reasonably well (see its use in

Kaufman et al (2011) as a key component to analyze large designs).

Any integrations involving x0 in formulas must now include integrations over the

mean terms. For example, in (7.5.18), the integral over the input points is no longer

d0 but becomes

nk1∑

k1=0

. . .

nkd∑

kd=0

βk1...kd

∫ 1

0

· · ·
∫ 1

0

d∏

i=1

x
ki

i
dxi =

nk1∑

k1=0

. . .

nkd∑

kd=0

βk1...kd

d∏

i=1

1

ki + 1
. (7.7.5)

Weighted least squares estimators of each β coefficient are substituted in (7.7.5).

Similar, but more complicated, adjustments must be made to allow a general

regression mean in the formulas below.

Appendix A

List of Notation

A.1 Abbreviations

ARD — Average reciprocal distance (design) (Section TBD)

BUP — Best unbiased predictor (Section 3.2)

BLUP — Predictor having minimum mean squared prediction error

in the class of predictors that are linear and unbiased (with

respect to some family of distributions) (Section 3.1)

ERMSPE — Empirical root mean squared prediction error (Section 3.3)

GRF — Gaussian random function (Subsection 2.3)

GP — Gaussian process (Subsection TBD)

IMSPE — Integrated mean squared prediction error (Section 5.2)

LHD — Latin hypercube design (Subsection ??)

LUP — Linear unbiased predictor (Section 3.2)

MLE — Maximum likelihood estimator

MMSPE — Maximum mean squared prediction error (Section 5.2)

MmLHD — Maximin Latin hypercube design (Subsection TBD)

mARD — Minimum ARD design (Section TBD)

MSPE — Mean squared prediction error (Section 3.2)

REML — Restricted (or residual) maximum likelihood (estimator)

(Section 3.3)

RMSPE — Root mean squared prediction error (Equation ??)

XVE — Cross validated estimator (Section 3.3)

205

206 Appendix A Notation

A.2 Symbols

0n — n × 1 vector of zeroes

1n — n × 1 vector of ones

(a)+ — max{a, 0} for a ∈ IR

(a)− — min{a, 0} for a ∈ IR

⌈a⌉ — Smallest integer greater than or equal to a for a ∈ IR

ℓn(a) — Natural logarithm of a, a > 0

|a| — Absolute value of a for a ∈ IR(
n

j

)
— n!/(j!(n− j)!), for integer j with 0 ≤ j ≤ n is the number of

subsets of size j that can be drawn from n distinct objects

Covp[Y(x1), Y(x2)] — Process model covariance of Y(·)

D∞(D) — star discrepancy (from the uniform distribution) given by

(??)

det(W) — Determinant of the square matrix W

ξα(xc) — Upper α quantile of the distribution of ys(xc, Xe) induced by

random environmental variables Xe for fixed control vari-

able xc (Subsection 1.4.1)

ei — The ith unit vector, (0, . . . , 0, 1, 0, . . . , 0)⊤, where 1 is in the

ith position.

Ep[·] — Expectation with respect to the process model under consid-

eration

f j(·) — The jth regression function in the stochastic model for Y(·)

(Equation TBD)

In — n × n identity matrix

I{E} — indicator function of the event E which is defined to be 1 or

0 as E is true or false (Section ??)

Jn — n × n matrix of 1s, i.e., Jn ≡ 1n1⊤n
m — Number of outputs in a multiple response application (Sub-

section 1.4.2)

µ(xc) — Mean of ys(xc, Xe) induced by random environmental vari-

ables Xe for fixed control variable xc (Subsection 1.4.1)

N(µ, σ2) — The univariate normal distribution with mean µ and variance

σ2

zα — Upper α quantile of the standard normal distribution, i.e.,

P{Z ≥ zα} = α where Z ∼ N(0, 1)

Np(µ,Σ) — The p-dimensional multivariate normal distribution with

mean vector µ and covariance matrix Σ

R(·) — Correlation function (Section 2.3)

R — n× n matrix of correlations among the elements of Yn (Sec-

tion 3.3)

IR — Real numbers

rank(W) — Rank of the r × c matrix W

σ2(xc) — Variance of y(xc, ·) induced by the distribution of the envi-

ronmental and code variables (Subsection 1.4.1)

·
⊤ — Transpose of a vector or matrix

207

tr(W) — Trace of the square matrix W

Tν — The univariate t distribution with ν degrees of freedom

tαν — Upper α quantile of the t distribution with ν degrees of free-

dom, i.e., P{W ≥ tαν } = α where W ∼ Tν
Tp(ν, µ,Σ) — The p-dimensional multivariate student t distribution with ν

degrees of freedom, location vector µ ∈ IRp, and positive

definite scale matrix Σ (Section B)

T1(ν, µ, σ) — The univariate student t distribution with ν degrees of free-

dom, location µ ∈ IR, and scale parameter σ > 0, a special

case of the Tp(ν, µ,Σ) distribution (Section B)

U(a, b) — The uniform distribution over the interval (a, b)

xc — Vector of control (engineering) variables (Section 2.1)

xe — Vector of environmental (noise) variables (Section 2.1)

xm — Vector of model (code) variables (Section 2.1)

x — Vector of all input variables to a given computer code in-

cluding whatever control, environmental, and model vari-

ables are required by the code (Section 2.1)

X — Sample space for the vector of all input variables x (Section

2.1)

ys(·) — The output of a computer simulator (Section TBD)

yp(·) — The output of a physical experiment (Section TBD)

ys
i
(·)/y

p

i
(·) — The ith of m simulator or physical experiment outputs, 1 ≤

i ≤ m (Subsection TBD)

[X|Y] — Conditional distribution of X given Y

‖v‖p —
(∑n

i=1 v
p

i

)1/p
, the p-norm of the vector v ∈ IRn

Appendix B

Mathematical Facts

B.1 The Multivariate Normal Distribution

There are several equivalent of ways of defining the multivariate normal distribu-

tion. Because we mention both degenerate (“singular”) and nondegenerate (“non-

singular”) multivariate normal distributions, we will define this distribution by the

standard device of describing it indirectly as the distribution that arises by forming

a certain function, affine combinations, of independent and identically distributed

standard normal random variables.

Definition Suppose Z = (Z1, . . . , Zr) consists of independent and identically dis-

tributed N(0, 1) random variables, L is an m × r real matrix, and µ is m × 1 real

vector. Then

W = (W1, . . . ,Wm) = LZ + µ

is said to have the multivariate normal distribution (associated with µ, L).

It is straightforward to compute the mean vector of (W1, . . . ,Wm) and the matrix of

the variances and covariances of the (W1, . . . ,Wm) in terms of (µ,L) as

µ = E{W} and Cov{W} = E{(W − µ)(W − µ)⊤} = LL⊤.

As an example, suppose Z1 and Z2 are independent N(0, 1) and

W =

(
W1

W2

)
= LZ + µ =

(
3 0

5 0

) (
Z1

Z2

)
+

(
2

0

)
.

By construction, W has a multivariate normal distribution. Notice that both W1 and

W2 can be expressed in terms of the other. In contrast,

(
W1

W2

)
=

(
3 2

0 5

) (
Z1

Z2

)
+

(
0

0

)

209

210 Appendix B Mathematical Results

also has a multivariate normal distribution. In the second case we have defined the

same number of linearly independent Wis as independent Zis.

This example illustrates the fundamental dichotomy in multivariate normal dis-

tributions. A multivariate normal distribution is nonsingular (nondegenerate) if the

rows of L are linearly independent, i.e, rank(L) = m, and it is singular (degenerate)

if the rows of L are linearly dependent, i.e, rank(L) < m.

Suppose W has the nonsingular multivariate normal distribution defined by µ ∈
IRm and m × r matrix L having rank m. Let

Σ = LL⊤

denote the covariance matrix of W. Notice that Σ must be symmetric and positive

definite (the latter follows because if ‖·‖2 denotes Euclidean norm and z , 0, then

z⊤Σ z = z⊤LL⊤z = ‖L⊤z‖2
2
> 0 because rank(L) = m). In this case it can be shown

that W = (W1, . . . ,Wm) has density

f (w) =
1

(2π)m/2(det(Σ))1/2
exp

{
−1

2
(w − µ)⊤Σ−1(w − µ)

}
(B.1.1)

over w ∈ IRm. We denote the fact that W has the nonsingular multivariate normal

distribution (B.1.1) by W ∼ Nm(µ,Σ). There are numerous algorithms for comput-

ing various quantiles associated with multivariate normal distributions. We note, in

particular, Dunnett (1989) who provides a FORTRAN 77 program for computing

equicoordinate percentage points of multivariate normal distributions having prod-

uct correlation structure (see also Odeh et al (1988)).

Now suppose W has the singular multivariate normal distribution defined by

µ ∈ IRm and m × r matrix L where rank(L) = q < m. Then m − q rows of L can be

expressed as linear combinations of the remaining q rows of L and the correspond-

ing m − q components of W − µ can be expressed as (the same) linear combinations

of the remaining q components of W − µ. Thus, in this case, the support of W is on

a hyperplane in a lower dimensional subspace of IRm. Furthermore, the q compo-

nents of W used to express the remaining variables have a nonsingular multivariate

normal distribution with density on IRq.

To illustrate the singular case, consider the toy example above. Marginally, both

W1 and W2 have proper normal distributions with W1 = 3Z1 + 2 ∼ N(2, 9) and

W2 = 5Z1 ∼ N(0, 25). This shows that choice of the q variables that have the proper

normal distribution is nonunique. Given either W1 or W2, the other can be expressed

in terms of the first. For example, given W1, W2 = 5(W1 − 2)/3 with probability

one or given W2, W1 = 2 + 3W2/5 with probability one. In the second part of the

example, W1 and W2 have a nonsingular bivariate normal distribution.

In the text we make use of the following integration formula, which is an appli-

cation of the fact that (B.1.1) is a density function.

Lemma B.1. For any n×1 vector v and any n×n symmetric, positive definite matrix

A,

211

∫

IRn
exp

{
−1

2
w⊤A−1w + v⊤w

}
dw

= (2π)n/2(det(A))1/2 exp

{
1

2
v⊤Av

}
.

To prove this formula consider the Nn(µ,Σ) multivariate normal density with co-

variance matrix Σ = A and mean µ = Σv. Then

(2π)n/2(det(Σ))1/2 =

∫

IRn
exp

{
−1

2
(w − µ)⊤Σ−1(w − µ)

}
dw

=

∫

IRn
exp

{
−1

2
w⊤Σ−1w + µ⊤Σ−1w − 1

2
µ⊤Σ−1µ

}
dw.

Substituting for Σ and µ and rearranging terms gives the result. �

Perhaps more usefully, we can interpret the proof of Lemma B.1 as stating that

if W has density f (w), for which

f (w) ∝ exp

{
−1

2
w⊤A−1w + v⊤w

}
, then W ∼ Nn [Av, A] . (B.1.2)

We also require the following result concerning the conditional distribution of a

set of components of the multivariate normal distribution given the remaining ones.

Lemma B.2. (Conditional distribution of the multivariate normal) Suppose that

(
W1

W2

)
= Nm+n

[(
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)]

where µ1 is m × 1, µ2 is n × 1, Σ1,1 is m × m, Σ1,2 = Σ
⊤
2,1 is m × n, and Σ2,2 is n × n.

Then the conditional distribution of W1|W2 is

Nm

[
µ1 + Σ1,2Σ

−1
2,2

(
W2 − µ2

)
,Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1

]
. (B.1.3)

B.2 The Non-Central Student t Distribution

This appendix defines the univariate Student t and multivariate Student t distribu-

tions. Throughout, suppose that µ ∈ IRm and Σ is a positive definite matrix.

Definition The random vector W = (W1, . . . ,Wm) with joint probability density

f (w) =
Γ((ν + m)/2)

(det(Σ))1/2(νπ)m/2Γ(ν/2)

(
1 +

1

ν
(w − µ)⊤Σ−1(w − µ)

)−(ν+m)/2

(B.2.1)

over w ∈ IRm is said to have the nonsingular multivariate t distribution with ν

degrees of freedom, location parameter µ, and scale matrix Σ.

212 Appendix B Mathematical Results

We denote the multivariate t distribution (B.2.1) by W ∼ Tm(ν, µ,Σ). The

Tm(ν, µ,Σ) distribution has mean vector µ provided ν > 1 and has covariance matrix

νΣ/(ν − 2) provided ν > 2. The “usual” univariate t and multivariate t distributions

are the special cases of (B.2.1) corresponding to

• T1(ν, 0, 1) and

• Tm(ν, 0, R)

where R has unit diagonal elements (Tong (1980), Odeh et al (1988) and Dunnett

(1989)).

In particular, if X ∼ Nm(0, R), where R is as in the previous paragraph, and X is

independent of V ∼ χ2
ν , then

W = (W1, . . . ,Wm) ≡
(

X1√
V/ν

, . . . ,
Xm√
V/ν

)
∼ Tp(ν, 0, R).

Some other important relationships concerning the multivariate t distribution are

• If W ∼ Tp(ν, µ,Σ) then W − µ ∼ Tp(ν, 0,Σ).

• When p = 1, W ∼ T1(ν, µ, σ) if and only if 1
σ

(W − µ) ∼ T1(ν, 0, 1).

• For arbitrary p, µ ∈ IRp, and p × p positive definite Σ with diagonal elements σ2
i

for 1 ≤ i ≤ p, W ∼ Tp(ν, µ,Σ) if and only if Λ−1(W − µ) ∼ Tp(ν, 0, R) where

Λ = Λ⊤ = diag(σ1, . . . , σm).

Dunnett (1989) provides an extension of his multivariate normal percentile pro-

gram to compute equicoordinate percentage points of the multivariate t distribution

for the case where the scale matrix has unit variances and a (rank one) product cor-

relation structure.

B.3 Some Results from Matrix Algebra

The following formula for the inverse of a 2 × 2 partitioned matrix can be found as

a special case of Theorem 8.5.11 of Harville (1997), among many other sources.

Lemma B.3 (Inversion of a partitioned matrix-I). Suppose that B is a nonsingular

n × n matrix and

T =

(
D A⊤

A B

)

where D is m × m and A is n × m. Then T is nonsingular if and only if

Q = D − A⊤B−1 A

is nonsingular. In this case, T−1 is given by

(
Q−1 −Q−1 A⊤B−1

−B−1 AQ−1 B−1 + B−1 AQ−1 A⊤B−1

)
. (B.3.1)

213

That (B.3.1) is T−1 can easily be verified by multiplication. To verify the “only if”

part of the lemma, see Harville (1997), for example.

The special case of Lemma B.3 corresponding to D = 0 occurs frequently. If B

is a nonsingular n × n matrix and A is n × m, then

T =

(
0 A⊤

A
¯

B
¯

)

has an inverse if and only if

A
¯
⊤B−1A

¯
is nonsingular. In this case, T−1 is given by


−

(
A⊤B−1 A

)−1 (
A⊤B−1 A

)−1
A⊤B−1

B−1 A
(
A⊤B−1 A

)−1
B−1 − B−1 A

(
A⊤B−1 A

)−1
A⊤B−1

 .

Lemma B.4. Suppose that B is a nonsingular n × n matrix, C is nonsingular m × m

matrix, and A is an arbitrary n×m matrix such that (A⊤B−1 A+C)−1 is nonsingular.

Then
(
B + AC−1 A⊤

)
is (n × n) nonsingular with inverse given by

(
B + AC−1 A⊤

)−1
= B−1 − B−1 A

(
A⊤B−1 A + C

)−1
A⊤B−1.

Proof: Multiply the right-hand expression by
(
B + AC−1 A⊤

)
and verify that it is the

identity. �

Lemma B.5. Suppose that a , 0 and b , −a/n, then

• (aIn + bJn)−1 =
(

1
a

In − b
a(a+nb)

Jn

)
and

• det ((aIn + bJn)) = an−1(a + nb)

where In is the n × n identity matrix and Jn is the n × n matrix of ones.

214 Appendix B Mathematical Results

References

Abrahamsen P (1997) A review of gaussian random fields and correlation functions.

Tech. Rep. 917, Norwegian Computing Center, Box 114, Blindern, N0314 Oslo,

Norway

Adler RJ (1981) The Geometry of Random Fields. J. Wiley, New York

Adler RJ (1990) An Introduction to Continuity, Extrema, and Related Topics for

General Gaussian Processes. Institute of Mathematical Statistics, Hayward, Cali-

fornia

Allen DM (1974) The relationship between variable selection and data augmenta-

tion and a method for prediction. Technometrics 16:125–127

An J, Owen AB (2001) Quasi-regression. Journal of Complexity 17:588–607

Atkinson AC, Donev AN (1992) Optimum experimental designs. Oxford University

Press

Bates RA, Buck RJ, Riccomagno E, Wynn HP (1996) Experimental design and

observation for large systems. Journal of the Royal Statistical Society B 58:77–

94

Berger JO, De Oliveira V, Sansó B (2001) Objective bayesian analysis of spatially

correlated data. Journal of the American Statistical Association 96:1361–1374

Berk R, Bickel P, Campbell K, Fovell R, Keller-McNulty S, Kelly E, Linn R, Park B,

Perelson A, Rouphail N, Sacks J, Schoenberg F (2002) Workshop on statistical

approaches for the evaluation of complex computer models. Statistical Science

17(2):173–192

Bernardo MC, Buck RJ, Liu L, Nazaret WA, Sacks J, Welch WJ (1992) Integrated

circuit design optimization using a sequential strategy. IEEE Transactions on

Computer-Aided Design 11:361–372

Birk DM (1997) An Introduction to Mathematical Fire Modeling. Technomic Pub-

lishing, Lancaster, PA

Bochner S (1955) Harmonic Analysis and the Theory of Probability. University of

California Press, Berkeley

Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V (1997) Optimization

using surrogate objectives on a helicopter test example. Tech. Rep. SSGTECH-

97-027, Boeing Technical Report

Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A

rigorous framework for optimization of expensive functions by surrogates. Struc-

tural Optimization 17:1–13

Box G, Hunter W, Hunter J (1978) Statistics for Experimenters. J. Wiley, New York

Box GE, Draper NR (1987) Empirical model-building and response surfaces. John

Wiley & Sons, New York

Box GE, Jones S (1992) Split-plot designs for robust product experimentation. Jour-

nal of Applied Statistics 19:3–26

Bratley P, Fox BL, Niederreiter H (1994) Algorithm 738: Programs to generate

niederreiter’s low-discrepancy sequences. ACM Transactions on Mathematical

Software 20:494–495

References 215

Butler NA (2001) Optimal and orthogonal latin hypercube designs for computer

experiments. Biometrika 88:847–857

Campbell K (2001) Functional sensitivity analysis of computer model output. In:

Proceedings of the 7th Army Conference on Statistics, ?????

Campbell KS, McKay MD, Williams BJ (2005) Sensitivity analysis when

model outputs are functions (tutorial). In: Hanson KM, Hemez FM (eds)

Proceedings of the SAMO 2004 Conference on Sensitivity Analysis,

http://library.lanl.gov/ccw/samo2004/, Los Alamos National Laboratory, Los

Alamos, pp 81–89

Campbell KS, McKay MD, Williams BJ (2006) Sensitivity analysis when model

outputs are functions. Reliability and System Safety 91:1468–472

Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sen-

sitivity analysis of large models. Environmental Modelling & Software 22:1509–

1518

Campolongo F, Saltelli A, Cariboni J (2011) From screening to quantitative sensi-

tivity analysis. a unified approach. Computer Physics Communications 43:39–52

Chang PB, Williams BJ, Notz WI, Santner TJ, Bartel DL (1999) Robust optimiza-

tion of total joint replacements incorporating environmental variables. Journal of

Biomechanical Engineering 121:304–310

Chang PB, Williams BJ, Bawa Bhalla KS, Belknap TW, Santner TJ, Notz WI, Bartel

DL (2001) Robust design and analysis of total joint replacements: Finite element

model experiments with environmental variables. Journal of Biomechanical En-

gineering 123:239–246

Chapman WL, Welch WJ, Bowman KP, Sacks J, Walsh JE (1994) Arctic sea ice

variability: Model sensitivities and a multidecadal simulation. Journal of Geo-

physical Research C 99(1):919–936

Chen RB, Wang W, Wu CFJ (2011) Building surrogates with overcomplete bases in

computer experiments with applications to bistable laser diodes. IEE Transactions

182:978–988

Chen W, Jin R, Sudjianto A (2005) Analytical variance-based global sensitivity

analysis in simulation-based design under uncertainty. Journal of Mechanical De-

sign 127:875–876

Chen W, Jin R, Sudjianto A (2006) Analytical global sensitivity analysis and uncer-

tainty propogation for robust design. Journal of Quality Technology 38:333–348

Cooper LY (1980) Estimating safe available egress time from fires. Tech. Rep. 80-

2172, National Bureau of Standards, Washington D.C.

Cooper LY (1997) Ventcf2: An algorithm and associated fortran 77 subroutine for

calculating flow through a horizontal ceiling/floor vent in a zone-type compart-

mental fire model. Fire Safety Journal 28:253–287

Cooper LY, Stroup DW (1985) Aset–a computer program for calculating available

safe egress time. Fire Safety Journal 9:29–45

Craig PC, Goldstein M, Rougier JC, Seheult AH (2001) Bayesian forecasting for

complex systems using computer simulators. Journal of the American Statistical

Association 96:717–729

216 Appendix B Mathematical Results

Cramér H, Leadbetter MR (1967) Stationary and Related Stochastic Processes. J.

Wiley, New York

Cressie NA (1993) Statistics for Spatial Data. J. Wiley, New York

Currin C, Mitchell TJ, Morris MD, Ylvisaker D (1991) Bayesian prediction of de-

terministic functions, with applications to the design and analysis of computer

experiments. Journal of the American Statistical Association 86:953–963

Dean AM, Voss D (1999) Design and Analysis of Experiments. Spring-Verlag, New

York, New York

Dhrymes PJ (2005) Moments of truncated (normal) distributions, unpublished note

Draguljić D, Santner TJ, Dean AM (2012) Non-collapsing spacing-filling designs

for bounded polygonal regions. Technometrics 54:169–178

Draper NR, Smith H (1981) Applied Regression Analysis, 2nd Ed. J. Wiley, New

York

Dunnett CW (1989) Multivariate normal probability integrals with product correla-

tion structure. correction: 42, 709. Applied Statistics 38:564–579

Fang KT, Lin DKJ, Winker P, Zhang Y (2000) Uniform design: theory and applica-

tion. Technometrics 42:237–248

Fang KT, Li R, Sudjianto A (2005) Design and Modeling for Computer Experi-

ments. Chapman and Hall

Fuller WA, Hasza DP (1981) Properties of predictors for autoregressive time series

(corr: V76, 1023–1023). Journal of the American Statistical Association 76:155–

161

Gibbs MN (1997) Bayesian gaussian processes for regression and classification.

PhD thesis, Cambridge University, Cambridge, UK

Gneiting T (2002) Compactly supported correlation functions. Journal of Multivari-

ate Analysis

Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for

choosing a good ridge parameter. Technometrics 21:215–223

Halton JH (1960) On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numer Math 2:84–90

Handcock MS (1991) On cascading latin hypercube designs and additive models for

experiments. Communications Statistics—Theory Methods 20:417–439

Handcock MS, Stein ML (1993) A bayesian analysis of kriging. Technometrics

35:403–410

Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal mod-

eling of meterological fields. Journal of the American Statistical Association

89:368–390

Harville DA (1974) Bayesian inference for variance components using only error

contrasts. Biometrika 61:383–385

Harville DA (1977) Maximum likelihood approaches to variance component esti-

mation and to related problems (with discussion). Journal of the American Statis-

tical Association 72:320–340

Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer-

Verlag, New York, New York

References 217

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer Verlag, New York

Hayeck GT (2009) The kinematics of the upper extremity and subsequent effects on

joint loading and surgical treatment. PhD thesis, Cornell University, Ithaca, NY

USA

Hedayat A, Sloane N, Stufken J (1999) Orthogonal Arrays. Springer-Verlag, New

York, New York

Helton JC (1993) Uncertainty and sensitivity analysis techniques for use in per-

formance assessment for radioactive waste disposal. Reliability Engineering and

System Safety 42:327–367

Hickernell FJ (1998) A generalized discrepancy and quadrature error bound. Math

Comp 67:299–322

Hoeffding W (1948) A class of statistics with asymptotically normal distribution.

The Annals of Mathematical Statistics

Jeffreys H (1961) Theory of Probability. Oxford University Press, London

John JA (1987) Cyclic Designs. Chapman & Hall Ltd, New York

John PWM (1980) Incomplete Block Designs. M. Dekker, Inc., New York

Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance de-

signs. Journal of Statistical Planning and Inference 26:131–148

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive

black–box functions. Journal of Global Optimization 13:455–492

Journel AG, Huijbregts CJ (1978) Mining Geostatistics. Academic Press, London

Journel AG, Huijbregts CJ (1979) Mining Geostatistics. Academic Press, New York

Kackar RN, Harville DA (1984) Approximations for standard errors of estimators

of fixed and random effects in mixed linear models. Journal of the American

Statistical Association 87:853–862

Kaufman C, Bingham D, Habib S, Heitmann K, Frieman J (2011) Efficient emu-

lators of computer experiments using compactly supported correlation functions,

with an application to cosmology. The Annals of Applied Statistics 5:24702492

Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models (with

discussion). Journal of the Royal Statistical Society B 63:425–464

Kozintsev B (1999) Computations with gaussian random fields. PhD thesis, Depart-

ment of Mathematics and Institute for Systems Research, University of Maryland,

College Park, MD USA

Kozintsev B, Kedem B (2000) Generation of ‘similar’ images from a given discrete

image. Journal of Computational and Graphical Statistics 9:286–302

Kreyszig E (1999) Advanced engineering mathematics. John Wiley, New York

Lehman J (2002) Sequential design of computer experiments for robust parameter

design. PhD thesis, Department of Statistics, Ohio State University, Columbus,

OH USA

Lemieux C (2009) Monte Carlo and Quasi-Monte Carlo sampling,. Springer, New

York, NY, USA

Lempert R, Williams BJ, Hendrickson J (2002) Using global sensitivity analysis

to understand policy effects and to aid in new policy contruction in integrated

assessment models. Tech. rep., RAND

218 Appendix B Mathematical Results

Linkletter C, Bingham D, Hengartner N, Higdon D, Ye KQ (2006) Variable selection

for Gaussian process models in computer experiments. Technometrics 48:478–

490

Loeppky JL, Sacks J, Welch WJ (2009) Choosing the sample size of a computer

experiment: A practical guide. Technometrics 51(4):366–376

Loeppky JL, Williams BJ, Moore LM (2011) Gaussian process model for mixture

experiments. Tech. rep., University of British Columbia

Loeppky JL, Moore LM, Williams BJ (2012) Projection array based designs for

computer experiments. Journal of Statistical Planning and Inference 142:1493–

1505

Lynn RR (1997) Transport model for prediction of wildfire behavior. Tech. Rep.

LA13334-T, Los Alamos National Laboratory

Matérn B (1960) Spatial variation. PhD thesis, Meddelanden fran Statens Skogs-

forskningsinstitut, vol. 49, Num. 5

Matérn B (1986) Spatial Variation (Second Edition). Springer-Verlag, New York

Matheron G (1963) Principles of geostatistics. Economic Geology 58:1246–1266

McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.

Technometrics 21:239–245

Mitchell TJ, Morris MD, Ylvisaker D (1990) Existence of smoothed stationary pro-

cesses on an interval. Stochastic Processes and their Applications 35:109–119

Mockus J, Eddy W, Mockus A, Mockus L, Reklaitis G (1997) Bayesian Heuristic

Approach to Discrete and Global Optimization: Algorithms, Visualization, Soft-

ware, and Applications. Kluwer Academic, New York

Montgomery GP, Truss LT (2001) Combining a statistical design of experiments

with formability simulations to predict the formability of pockets in sheet metal

parts. Society of Automotive Engineers 2001-01-1130

Moon H (2010) Design and analysis of computer experiments for screening in-

put variables. PhD thesis, Department of Statistics, The Ohio State University,

Columbus, Ohio USA

Moon H, Santner TJ, Dean AM (2012) Two-stage sensitivity-based group screening

in computer experiments. Technometrics 54(4):376–387

Morris MD (1991) Factorial sampling plans for preliminary computational experi-

ments. Technometrics 33:161–174

Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments.

Journal of Statistical Planning and Inference 43:381–402

Neal RM (2003) Slice sampling (with discussion). Annals of Statistics 31:705—767

Nelder JA, Mead R (1965) A simplex method for function minimization. Computer

Journal 7:308–313

Niederreite H (1988) Low-discrepancy and low-dispersion sequences. Journal of

Number Theory 30:51–70

Niederreiter H (1992) Random Number Generation and Quasi-Monte Carlo Meth-

ods. SIAM, Philadelphia

Oakley JE (2002) Eliciting Gaussian process priors for complex computer codes.

The Statistician 51:81–97

References 219

Oakley JE (2009) Decision-theoretic sensitivity analysis for complex computer

models. Technometrics 5(2):121–129

Odeh R, Davenport J, Pearson N (eds) (1988) Selected Tables in Mathematical

Statistics, vol 11. American Mathematical Society

O’Hagan A, Haylock RG (1997) Bayesian uncertainty analysis and radiological pro-

tection. In: Barnett V, Turkman KF (eds) Statistics for the Environment, vol 3, J.

Wiley, pp 109–128

O’Hagan A, Kennedy MC, Oakley JE (1999) Uncertainty analysis and other infer-

ence tools for complex computer codes. In: Bernardo JM, Berger JO, Dawid AP,

Smith AFM (eds) Bayesian Statistics, vol 6, Oxford University Press, pp 503–524

Ong K, Santner T, Bartel D (2008) Robust design for acetabular cup stability ac-

counting for patient and surgical variability,. Journal of Biomechanical Engineer-

ing 130:031,001

Owen AB (1992a) A central limit theorem for Latin hypercube sampling. Journal

of the Royal Statistical Society, Series B: Methodologic al 54:541–551

Owen AB (1992b) Orthogonal arrays for computer experiments, integration and

visualization (Corr: 93V3 p261). Statistica Sinica 2:439–452

Owen AB (1995) Randomly permuted (t,m, s)-nets and (t, s) sequences. In: Nieder-

reiter H, Shiue PJS (eds) Monte Carlo and Quasi-Monte Carlo Methods in Scien-

tific Computing, Springer-Verlag, New York, pp 299–317

Patterson HD, Thompson R (1971) Recovery of interblock information when block

sizes are unequal. Biometrika 58:545–554

Patterson HD, Thompson R (1974) Maximum likelihood estimation of components

of variance. In: Proceedings of the 8th International Biometric Conference, Bio-

metric Society, Washington DC, pp 197–207

Prasad NGN, Rao JNK (1990) The estimation of the mean squared error of small-

area estimators. Journal of the American Statistical Association 85:163–171

Pujol G (2009) Simplex-based screening designs for estimating metamodels. Relia-

bility Engineering and System Safety 94:1156–1160

Pukelsheim F (1993) Optimal Design of Experiments. J. Wiley, New York

Raghavarao D (1971) Constructions and Combinatorial Problems in Design of Ex-

periments. J. Wiley, New York

Reese CS, Wilson AG, Hamada M, Martz F, Ryan K (2000) Integrated analysis of

computer and physical experiments. Tech. Rep. LA-UR-00-2915, Sandia Labo-

ratories

Rinnooy Kan AHG, Timmer GT (1984) A stochastic approach to global optimiza-

tion. In: Boggs PT, Byrd RH, Schnabel RB (eds) Optimization 84: Proceedings

of the SIAM Conference on Numerical Optimization, SIAM, Philadelphia, pp

245–262

Ripley BD (1981) Spatial Statistics. J. Wiley & Sons, New York

Robert CP, Casella G (1999) Monte Carlo Statistical Methods. Springer-Verlag,

New York

Rodrı́guez-Iturbe I, Mejı́a JM (1974) The design of rainfall networks in time and

space. Water Resources Research 10:713–728

220 Appendix B Mathematical Results

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer

experiments. Statistical Science 4:409–423

Sahama AR, Diamond NT (2001) Sample size considerations and augmentation

of computer experiments. Journal of Statistical Computation and Simulation

68(4):307–319

Saltelli A, Sobol´ IM (1995) About the use of rank transformation in sensitivity

analysis of model output. Reliability Engineering and System Safety 50:225239

Saltelli A, Chan K, Scott E (2000) Sensitivity Analysis. John Wiley & Sons, Chich-

ester

Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity Analysis in Prac-

tice: A Guide to Assessing Scientific Models. John Wiley & Sons Ltd , Chichester

Silvey SD (1980) Optimal design: An introduction to the theory for parameter.

Chapman & Hall Ltd, New York

Sobol´ IM (1967) Distribution of points in a cube and approximate evaluation of

integrals. USSR Comput Maths Math Phys 7:86–112

Sobol´ IM (1976) Uniformly distributed sequences with an additional uniform prop-

erty. USSR Comput Maths Math Phys 16:236–242

Sobol´ IM (1990) Sensitivity estimates for non-linear mathematical models. Matem-

aticheskoe Modelirovanie 2:112–118

Sobol´ IM (1993) Sensitivity analysis for non-linear mathematical models. Mathe-

matical Model Comput Exp 1:407–414

Stein ML (1987) Large sample properties of simulations using latin hypercube sam-

pling. Technometrics 29:143–151

Stein ML (1999) Interpolation of Spatial Data: some theory for kriging. Springer-

Verlag, New York

Stinstra E, den Hertog D, Stehouwer P, Vestjens A (2003) Constrained maximin

designs for computer experiments. Technometrics 45(4):340–346

Stone M (1974) Cross-validatory choice and assessment of statistical predictions

(with discussion) (corr: 1976, vol 38, 102). Journal of the Royal Statistical Society

B 36:111–147

Stone M (1977) An asymptotic equivalence of choice of model by cross-validation

and Akaike’s criterion. Journal of the Royal Statistical Society B 39:44–47

Street AP, Street DJ (1987) Combinatorics of experimental design. Oxford Univer-

sity Press, Oxford

Sun F, Dean AM, Santner TJ (2014) One-at-a-time designs for estimating elemen-

tary effects of simulator experiments with non-rectangular input regions. Submit-

ted

Svenson J, Santner T, Dean A, Moon H (2013) Estimating sensitivity indices based

on gaussian process metamodels with compactly supported correlation functions.

To appear in Journal of Statistical Planning and Inference

Svenson JD (2011) Computer experiments: Multiobjective optimization and sensi-

tivity analysis. PhD thesis, Department of Statistics, The Ohio State University,

Columbus, Ohio USA

Tang B (1993) Orthogonal array-based latin hypercubes. Journal of the American

Statistical Association 88:1392–1397

References 221

Tang B (1994) A theorem for selecting OA-based latin hypercubes using a distance

criterion. Communications in Statistics - Theory and Methods 23:2047–2058

Tong YL (1980) Probability Inequalities in Multivariate Distributions. Academic

Press, New York

Trosset MW (1999) Approximate maximin distance designs. In: ASA Proceedings

of the Section on Physical and Engineering Sciences, American Statistical Asso-

ciation (Alexandria, VA), pp 223–227

Trosset MW, Padula AD (2000) Designing and analyzing computational experi-

ments for global optimization. Tech. Rep. 00-25, Department of Computational

& Applied Mathematics, Rice University

Van Der Vaart AW (1998) Asymptotic Statistics. Cambridge University Press, Cam-

bridge, U.K.

Vecchia AV (1988) Estimation and identification for continuous spatial processes.

Journal of the Royal Statistical Society B 50:297–312

Wahba G (1980) Spline bayes, regularization, and generalized cross-validation for

solving approximation problems with large quantities of noisy data. In: Pro-

ceedings of the International Conference on Approximation Theory in Honor of

George Lorenz, Academic Press, Austin, Texas

Walton W (1985) Aset–b: A room fire program for personal computers. Tech. Rep.

85-3144-1, National Bureau of Standards, Washington D.C.

Welch WJ (1985) Aced: Algorithms for the construction of experimental designs.

The American Statistician 39:146

Welch WJ, Buck RJ, Sacks J, Wynn HP, Mitchell TJ, Morris MD (1992) Screening,

predicting, and computer experiments. Technometrics 34:15–25

Wiens DP (1991) Designs for approximately linear regression: Two optimality prop-

erties of uniform designs. Statistics and Probability Letters 12:217–221

Williams BJ (2001) Perk–parametric empirical kriging with examples. Tech. Rep.

678, Department of Statistics, The Ohio State University

Williams BJ, Santner TJ, Notz WI (2000) Sequential design of computer experi-

ments to minimize integrated response functions. Statistica Sinica 10:1133–1152

Wu CFJ, Hamada M (2000) Experiments: Planning, Analysis, and Parameter Design

Optimization. J. Wiley, New York

Yaglom AM (1962) Introduction to the Theory of Stationary Random Functions.

Dover, New York

Ye KQ (1998) Orthogonal column latin hypercubes and their application in com-

puter experiments. Journal of the American Statistical Association 93:1430–1439

Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric

Latin hypercube designs. Journal of Statistical Planning and Inference 90(1):145–

159

Zimmerman DL, Cressie NA (1992) Mean squared prediction error in the spatial

linear model with estimated covariance parameters. Annals of the Institute of

Statistical Mathematics 44:27–43

