
LING3701/PSYCH3371: Lecture Notes 8
A Model of Ambiguity in Sentence Processing
We have seen how complex ideas can be encoded and decoded into sentences.

This lecture will describe how this process controls for ambiguity.

Contents
8.1 Ambiguity as superposition [Smolensky, 1990, Rasmussen & Schuler, 2018]. 1
8.2 Propagation of ambiguity . 3
8.3 Resolution of ambiguity . 4
8.4 Probabilistic disambiguation . 7
8.5 Neural ambiguity resolution . 8

8.1 Ambiguity as superposition [Smolensky, 1990, Rasmussen & Schuler, 2018]
If multiple targets are associated with the same cue vector:

target 1 (insect)︷︸︸︷
.58

.0

.49

.0

.0

.67

.0

cue (e.g. the word ‘bug’)︷ ︸︸ ︷

.0 .58 .0 .0 .58 .0 .58 +

target 2 (microphone)︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

cue (e.g. the word ‘bug’)︷ ︸︸ ︷

.0 .58 .0 .0 .58 .0 .58

=

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

.0 .28 .0 .0 .28 .0 .28

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .38 .0 .0 .38 .0 .38

.0 .0 .0 .0 .0 .0 .0

+

.0 .0 .0 .0 .0 .0 .0

.0 .29 .0 .0 .29 .0 .29

.0 .29 .0 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .0 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .0 .0 .29 .0 .29

=

.0 .33 .0 .0 .33 .0 .33

.0 .29 .0 .0 .29 .0 .29

.0 .57 .0 .0 .57 .0 .57

.0 .0 .0 .0 .0 .0 .0

.0 .29 .0 .0 .29 .0 .29

.0 .38 .0 .0 .38 .0 .38

.0 .29 .0 .0 .29 .0 .29

1

when associative memory is cued using that vector, the result is both vectors, superposed:

target 1 (insect)︷︸︸︷
.58

.0

.49

.0

.0

.67

.0

+

target 2 (microphone)︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

=

combined target︷︸︸︷
.58

.50

.99

.0

.50

.67

.50

=

synaptic weights︷ ︸︸ ︷
.0 .33 .0 .0 .33 .0 .33

.0 .29 .0 .0 .29 .0 .29

.0 .57 .0 .0 .57 .0 .57

.0 .0 .0 .0 .0 .0 .0

.0 .29 .0 .0 .29 .0 .29

.0 .38 .0 .0 .38 .0 .38

.0 .29 .0 .0 .29 .0 .29

cue (‘bug’)︷︸︸︷
.0

.58

.0

.0

.58

.0

.58

PRACTICE: If associative memory M is made from one cue u and two targets v1 and v2, as below:

M =

target v1 (lender)︷︸︸︷
.0

.0

.80

.0

.0

.0

.60

cue u (‘bank’)︷ ︸︸ ︷

.0 .50 .50 .50 .0 .50 .0 +

target v2 (shore)︷︸︸︷
.58

.58

.0

.0

.58

.0

.0

cue u (‘bank’)︷ ︸︸ ︷

.0 .50 .50 .50 .0 .50 .0

what is the result of cueing M with u? (HINT: you don’t have to calculate the matrix!)

result︷︸︸︷

=

synaptic weights M︷ ︸︸ ︷ cue u (‘bank’)︷︸︸︷
.0

.50

.50

.50

.0

.50

.0

Describe the result in terms of v1 and v2.

2

8.2 Propagation of ambiguity
If we take a (non-interfering) set of associations:

target 1 (sting)︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

cue 1 (insect)︷ ︸︸ ︷

.0 .58 .0 .0 .58 .0 .58 +

target 2 (record)︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

cue 2 (microphone)︷ ︸︸ ︷

.0 .0 .58 .58 .0 .58 .0

=

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

+

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

=

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

.0 .33 .29 .29 .33 .29 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

and cue them with a combination of states, we get a proportional combination of targets:

target 1 (sting)︷︸︸︷
.29

.0

.29

.0

.0

.29

.0

+

target 2 (record)︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

=

combined target︷︸︸︷
.29

.50

.79

.0

.50

.29

.50

=

synaptic weights︷ ︸︸ ︷
.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

.0 .33 .29 .29 .33 .29 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

combined cue (insect + microphone)︷︸︸︷
.0

.29

.58

.58

.29

.58

.29

This is important because it allows ambiguity to propagate through a mental process.

3

PRACTICE: If associative memory M is made from cues u1 and u2 and targets v1 and v2, as below:

M =

target v1 (cheap)︷︸︸︷
.0

.50

.50

.0

.0

.50

.50

cue u1 (lender)︷ ︸︸ ︷

.0 .0 .0 .80 .0 .0 .60 +

target v2 (stony)︷︸︸︷
.80

.0

.0

.0

.60

.0

.0

cue u2 (shore)︷ ︸︸ ︷

.50 .50 .50 .0 .30 .40 .0

what is the result of cueing M with a mixture of .7u1 and .3u2? (HINT: don’t calculate the matrix!)

result︷︸︸︷

=

synaptic weights M︷ ︸︸ ︷.7u1+.3u2 combined cue︷︸︸︷
.15

.15

.15

.56

.09

.12

.42

Describe the result in terms of v1 and v2.

8.3 Resolution of ambiguity
Recall the outer product of two vectors produces a matrix with pointwise products:

target v1︷︸︸︷
.0

.71

.0

.0

.71

cue u1︷ ︸︸ ︷

.0 .71 .0 .0 .71 =

associations M1︷ ︸︸ ︷
.0 .0 .0 .0 .0

.0 .50 .0 .0 .50

.0 .0 .0 .0 .0

.0 .0 .0 .0 .0

.0 .50 .0 .0 .50

(1)

4

This generalizes to triples of vectors as a tensor product:

target v′1︷︸︸︷

.58

.58

.0

.0

.58

⊗

cue v1︷︸︸︷

.58

.58

.0

.0

.58

⊗

cue u1︷︸︸︷

.58

.58

.0

.0

.58

=

tensor T1︷ ︸︸ ︷

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

Targets are then cued by multiplication (left-associative):

target v′1︷︸︸︷

.58

.58

.0

.0

.58

=

tensor T1︷ ︸︸ ︷

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19

.19.19.0.0.19

.0.0.0.0.0

.0.0.0.0.0

.19.19.0.0.19
cue u1︷︸︸︷

.58

.58

.0

.0

.58

cue v1︷︸︸︷

.58

.58

.0

.0

.58

target v′1︷︸︸︷

.58

.58

.0

.0

.58

=

matrix T1 u1︷ ︸︸ ︷

.33.33.0.0.33

.33.33.0.0.33

.0.0.0.0.0

.0.0.0.0.0

.33.33.0.0.33

cue v1︷︸︸︷

.58

.58

.0

.0

.58

This can be implemented with ‘switched’ connections.

This gives us a means to combine ‘top-down’ predictions with ‘bottom-up’ observations. . .

5

Build auto-associations of all states:

result v′1
(sting)︷︸︸︷

.71

.0

.0

.0

.71

⊗

predicted v1

(sting)︷︸︸︷

.71

.0

.0

.0

.71

⊗

observed u1

(‘sting’)︷︸︸︷

.71

.0

.0

.0

.71

+

result v′3
(sink)︷︸︸︷

.0

.0

.0

.99

.0

⊗

predicted v3

(sink)︷︸︸︷

.0

.0

.0

.99

.0

⊗

observed u3

(‘sink’)︷︸︸︷

.0

.0

.0

.99

.0

=

tensor T︷ ︸︸ ︷

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.97.0

.0.0.0.0.0

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.35.0.0.0.35

Then cue on observed state to pick out compatible component of mixed source state:

result ≈ v′1︷︸︸︷

.24

.0

.0

.0

.24

=

tensor T︷ ︸︸ ︷

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.97.0

.0.0.0.0.0

.35.0.0.0.35

.0.0.0.0.0

.0.0.0.0.0

.0.0.0.0.0

.35.0.0.0.35

observed u1

(‘sting’)︷︸︸︷

.71

.0

.0

.10

.71

predicted state v1 + v2︷︸︸︷

.24

.47

.47

.0

.24

Note the magnitude of the target is reduced compared to the source.

This reduction correlates with reading time delays (‘surprisal’) on encountering unpredicted words.

(It may take time proportional to the reduction to ‘amp up’ this state to unit magnitude.)

6

PRACTICE: If a filter F is made from auto-associated vectors v2 and v3, as below:

F =

v2 (stony)︷︸︸︷
.80

.0

.0

.0

.60

.0

.0

v2 (stony)︷ ︸︸ ︷

.80 .0 .0 .0 .60 .0 .0 +

v3 (phony)︷︸︸︷
.0

.58

.58

.0

.0

.0

.58

v3 (phony)︷ ︸︸ ︷

.0 .58 .58 .0 .0 .0 .58

what is the result of cueing F with a mixture of .8v1 and .2v2? (HINT: don’t calculate the matrix!)

result︷︸︸︷

=

filter F︷ ︸︸ ︷.8v1+.2v2 combined cue︷︸︸︷
.16

.0

.0

.48

.12

.64

.0

8.4 Probabilistic disambiguation
This multiplicative disambiguation is important because it allows probabilistic reasoning.

If:

• the prediction vector represents a prior probability of an idea P(i), and

• the filter matrix represents a likelihood P(w | i) of a word w given an idea i,

then:

• the tensor model will calculate a correct posterior probability of the idea given the word!

P(i |w) =
P(i) · P(w | i)

P(w)
(rescaled by a constant P(w) to sum to one)

7

8.5 Neural ambiguity resolution
Here’s a (hypothetical) neural implementation of tensor disambiguation:

prediction

(exp) (none)

(log)

c[1]

F[1,1] I[1,1]

F[1,2] I[1,2]

F[1,3] I[1,3]

o[1]

t[1]

c[2]

F[2,1] I[2,1]

F[2,2] I[2,2]

F[2,3] I[2,3]

o[2]

t[2]

c[3]

F[3,1] I[3,1]

F[3,2] I[3,2]

F[3,3] I[3,3]

o[3]

t[3]

1. prediction c is weighted by tensor weights to give filter F with exponential transfer function.

2. filter F is multiplied by observation o (adding exponentials) to give intermediate values I.

3. intermediate values I are log transformed and added to get filtered prediction t.

But any neural network can behave probabilistically if trained ‘autoregressively’ (to predict words).

8

References
[Rasmussen & Schuler, 2018] Rasmussen, N. E. & Schuler, W. (2018). Left-corner parsing with

distributed associative memory produces surprisal and locality effects. Cognitive Science,
42(S4), 1009–1042.

[Smolensky, 1990] Smolensky, P. (1990). Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artificial intelligence, 46(1-2), 159–216.

9

	Ambiguity as superposition smolensky90,rasmussenschuler18
	Propagation of ambiguity
	Resolution of ambiguity
	Probabilistic disambiguation
	Neural ambiguity resolution

