LING3701/PSYCH3371: Lecture Notes 10 Hierarchic Sequential Prediction

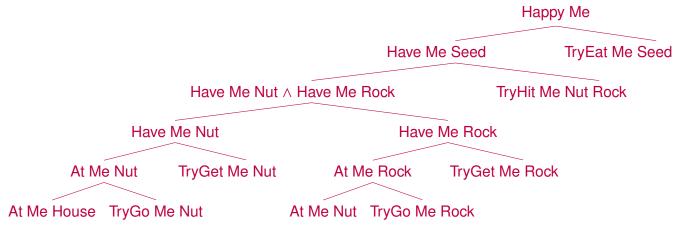
Contents

10.1	Complex events	1
10.2	Recognition of complex events using event fragments	2
10.3	Recognition Model [Johnson-Laird, 1983]	2
10.4	Example recognition by hierarchic sequential prediction	5
10.5	Practice	8

Language processing may be based on domain-general complex event prediction.

This uses memory and generalization (learning) to recognize complex events (plans).

(Recall that events may be represented in the brain as elementary predications. We will assume events are also connected by elementary predications of causation.)


10.1 Complex events

We assume complex events are made of preconditions and actions, or conjoined propositions:

 $\langle \text{conclusion} \rangle$ $\langle \text{proposition 1} \rangle \land \langle \text{proposition 2} \rangle$ $\langle \text{precondition} \rangle$ $\langle \text{action} \rangle$ $\langle \text{proposition 1} \rangle$ $\langle \text{proposition 2} \rangle$

Events can contain hierarchies of subevents, especially complex plans (complex ideas).

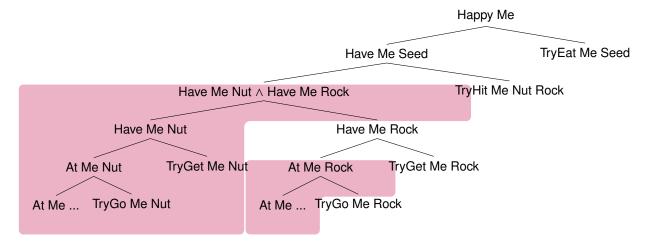
Here's a complex event for breaking open a nut with a rock and eating the seed inside:

Sub-events are related to parent events by 'cause' elementary predications.

When similar (recognition) operations are nested inside other operations, a process is called **recursive**.

10.2 Recognition of complex events using event fragments

Humans and (some) animals can recognize and re-create complex hierarchic events.


[Fuster, 1990, Botvinick, 2007]

Partial sequences of events can be grouped and stored as event fragments a/b, where:

- *a* is a **predicted whole** 'apex' top-level event or sub-event,
- *b* is an **expected part** 'base' sub-event / observed event yet to come, which completes the whole.

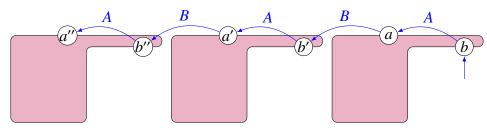
E.g. At Me Rock can be accounted as Have Me Rock / TryGet Me Rock.

Here's a set of event fragments recognized from observations in time order, up to TryGo Me Rock:

Near-complete sub-events can be chained together to save memory:

E.g. ... / Have Me Rock and At Me Rock form ... / TryGet Me Rock.

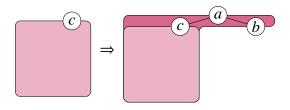
When a recent event fragment is completed, it can be added to an earlier event fragment.


E.g. if At Me Rock is complete, it can satisfy Have Me Rock with TryGet Me Rock expected.

Uncertainty about events may be modeled using superposed activation vectors, described earlier.

10.3 Recognition Model [Johnson-Laird, 1983]

This model maintains a sequence of event fragments accessible from a current expectation *b*:


- Cued association 'A' directly links an individual expectation b to a supported prediction a.
- Cued association 'B' directly links an individual prediction *a* to a preceding expectation *b*.

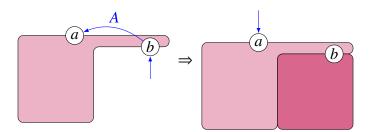
E.g. a'/b' is ... / Have Me Rock, a/b is At Me Rock / TryGo Me Rock.

Crucially, this store can only be a few elements long before interference causes trouble.

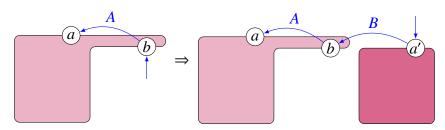
The model also assumes a set of learned **prediction rules**:

E.g. Have Me Rock (*a*) is composed of At Me Rock (*c*) followed by TryGet Me Rock (*b*). Here, *a*, *b*, and *c* might be connected by a 'cause' elementary predication (black lines).

First, distinguish terminal (simple, observed) and nonterminal (complex, hidden) events:

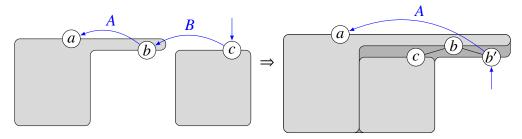


Note: in a binary-branching structure there are equal numbers of terminal and nonterminal events. We can build this structure by adding one terminal and one nonterminal branch at every observation.

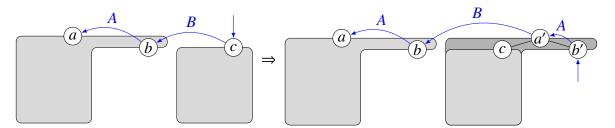

Complex ideas can now be assembled by connecting observed events to event fragments...

• **Terminal** decision (add observed event and connect to existing event fragment, or don't):

Yes-match outcome (set current prediction):



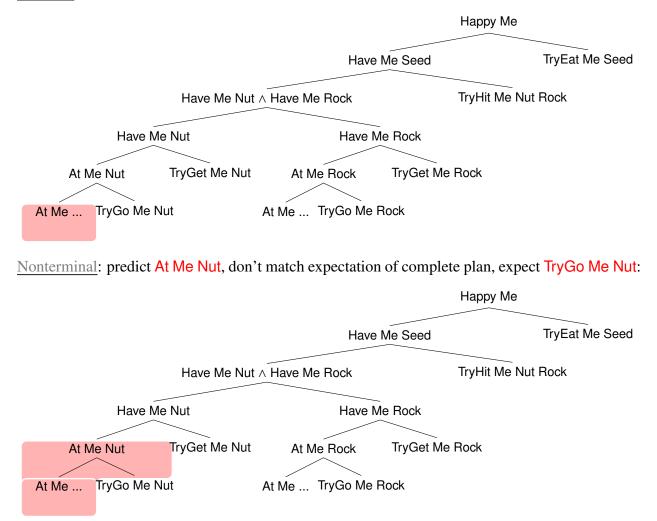
(Note that this replaces an event fragment with a complete event in associative memory.) **No-match** outcome (check types, store cued association from a' to b, set current prediction):

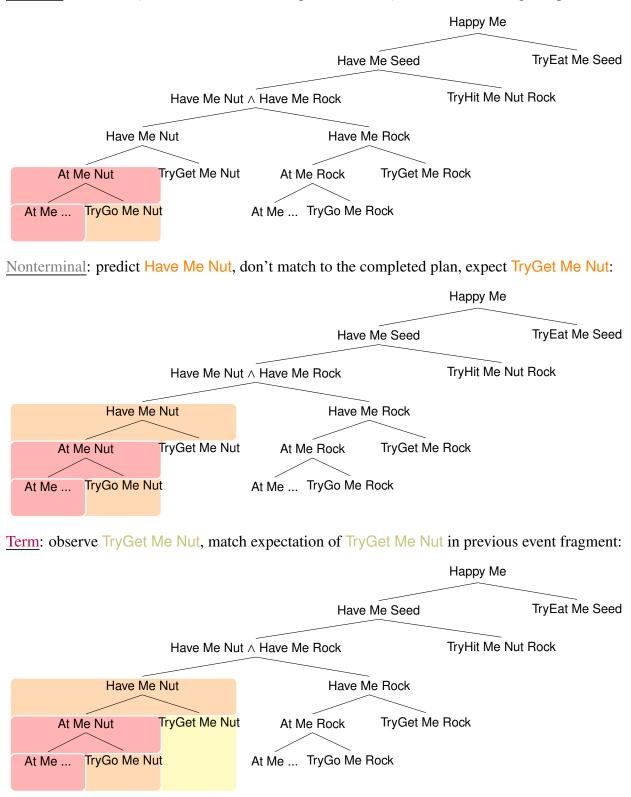


(Note that this just adds a complete event to associative memory.)

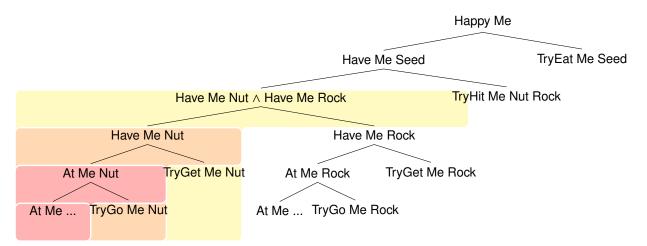
<u>Nonterminal</u> decision (apply prediction rule and connect resulting event fragment, or don't):
<u>Yes-match</u> outcome (check types, apply rule, store cued association from *b'* to *a*):

(Note that this replaces an event fragment and a complete event with an event fragment.) **No-match** outcome (apply rule, store cued association from b' to a' and a' to b:

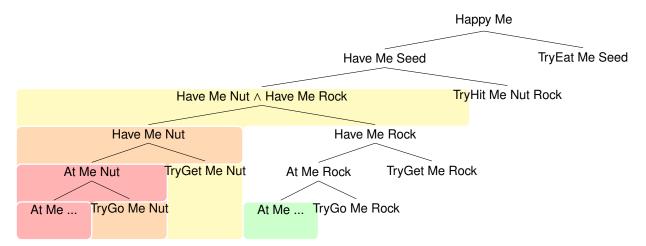

(Note that this replaces a complete event with an event fragment in associative memory.) Matching can be implemented in simple neural networks, generalized by procedural learning. These operations can recognize any branching event structure using a minimum amount of memory.


10.4 Example recognition by hierarchic sequential prediction

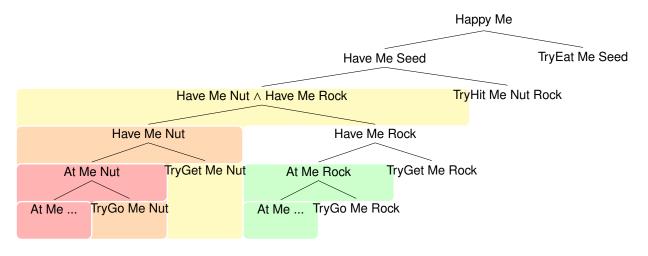
Here is an example of recognizing a complex plan from observations.

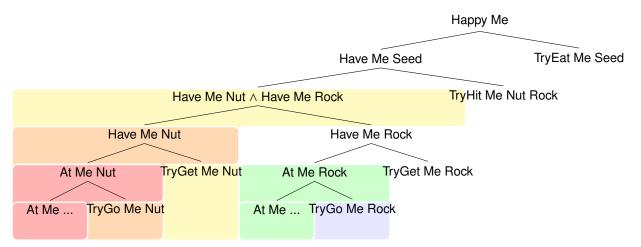

The events and event fragments will be drawn onto the phrase structure tree as they are recognized.

Terminal: start w. observation of At Me (wherever), don't match it to expectation of complete plan:

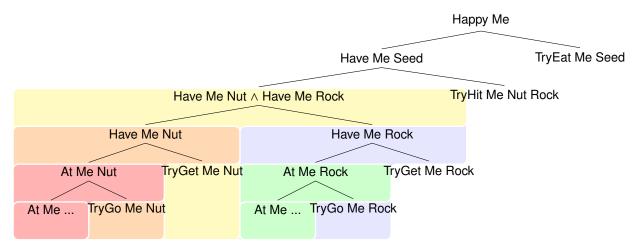


Terminal: observe TryGo Me Nut, match to expectation of TryGo Me Nut, making complete event:




<u>Nonterm</u>: predict Have Me Nut \land Have Me Rock, don't match as complete, expect Have Me Rock:

Term: observe At Me (wherever), don't match expectation Have Me Rock, creating separate event:


Nonterm: predict At Me Rock, don't match expectation of Have Me Rock, expect TryGo Me Rock:

Term: observe TryGo Me Rock, match to expectation of TryGo Me Rock, forming complete event:

Nonterm: predict & match Have Me Rock, forming single event fragment, expect TryGet Me Rock:

10.5 Practice

Continue the process for one more terminal and non-terminal decision.

Draw the event fragments that exist immediately after observing TryGet Me Rock. Specifically:

- 1. What will be the terminal decision outcome, and what event will exist afterward?
- 2. What will be the non-terminal decision outcome, and what fragment will exist afterward?

References

[Botvinick, 2007] Botvinick, M. (2007). Multilevel structure in behavior and in the brain: a computational model of Fuster's hierarchy. *Philosophical Transactions of the Royal Society, Series B: Biological Sciences*, 362, 1615–1626.

- [Fuster, 1990] Fuster, J. M. (1990). Behavioral electrophysiology of the prefrontal cortex of the primate. *Progress in Brain Research*, 85, 313–324.
- [Johnson-Laird, 1983] Johnson-Laird, P. N. (1983). *Mental models: Towards a cognitive science of language, inference, and consciousness.* Cambridge, MA, USA: Harvard University Press.