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Grammar as rules to accept/reject sentences

Can formalize knowledge about sentence structure as ‘context-free’ rules:

Sentence → Noun Phrase (you), Verb Phrase (have a cookie)
Verb Phrase → Verb (have), Noun Phrase (a cookie)
Noun Phrase → you
Noun Phrase → Determiner (a), Noun (cookie)

Strings that obey the rules have a derivation or ‘parse:’
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Claims about acquisition: ‘poverty of stimulus’

Formulated in this way, grammars are very hard to learn.

For example, learner can’t rule out unused rules, as they may just be rare:

Sentence→ Verb Phrase (have a cookie), Noun Phrase (you)

Caregivers don’t and can’t give negative examples of all unused rules.
(And even if they did, children don’t seem to pay attention to this.)

This ‘poverty of stimulus’ argument used to justify ‘universal grammar’ (UG):
(Chomsky, 1965)

I In UG, structural rules are innate, learners just set true/false parameters
(e.g.: allow pronominal subject to be dropped = true/false).
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Grammar as preferences over speech decisions

But we could also formulate grammar as probabilistically weighted rules:

Sentence → Noun Phrase (you), Verb Phrase (have a cookie) = 0.999
Sentence → Verb Phrase (have a cookie), Noun Phrase (you) = 0.001
Verb Phrase → Verb (have), Noun Phrase (a cookie) = 1.0
Noun Phrase → you = 0.5
Noun Phrase → Determiner (a), Noun (cookie) = 0.5

The grammar is now a probabilistic process for generating a string.
Strings with high probability sound more fluent: you have a cookie
Strings with low probability sound less fluent: have a cookie you

Defined this way, grammars can be learned probabilistically with no UG.
They are not learned exactly, but to some probabilistic distance
(ranked by the probability the grammar assigns to training sentences).
Incentive to assign high weights to common rules, low weights to rare rules.
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Probabilistically learning grammars from sentences

How can grammars be learned probabilistically?

Consider a space of possible probabilistic grammars with 15 labels:
I Generate (sample) many possible distributions of rule probabilities.

(Distributions are generated randomly from a Dirichlet prior model,
which is a model of distributions consistent with observed counts;
e.g. given 2 heads, 10 tails, coin is more likely biased than fair.)

I Generate (sample) many possible sets of trees given these weights.
(Generate random number and select outcome from rule distrubution.)

I Remove all trees whose terminals (words) are not in the sentences.
(Can’t just write in words; must sample proportionally to grammar!)

Trees that remain incorporate constraints of observations
(common co-occurrences are chunked together).

This is called rejection sampling.
It is very inefficient: odds of generating actual corpus sentence are very low.
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It is very inefficient: odds of generating actual corpus sentence are very low.
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Probabilistically learning grammars from sentences

Alternate model:

Consider space of possible CFGs with 15 labels
I Start with random set of values for rule distributions and trees.
I Iterate through rule distributions and tree decisions:

I Resample distributions/decision given surrounding context (posterior).

The model gradually comes to accommodate observations.

This is called Gibbs sampling.
It is way more efficient. We do this.
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Acquisition experiments

We run this probabilistic learning process on child-directed speech data.

Training data: CHILDES corpus of child-directed speech, Eve section.
(MacWhinney, 2000)

14,251 sentences of varying lengths.
Recorded during interaction between child and caregiver, then transcribed.

E.g. You have another cookie right on the table.

Experiments run for a week on 10 GPUs in Ohio Supercomputer Center.
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Evaluation Parameters

We evaluate several configurations of the learner:

I Manipulate number of categories: K ∈ {15, 30, 45}.
I Manipulate maximum center-embedding depth: D ∈ {1, 2}.

We also compare against other recent learners & right-branching baseline:
I UPPARSE (Ponvert et al., 2011),
I CCL (Seginer, 2007),
I BMMM+DMV (Christodoulopoulos et al., 2012),
I UHHMM (Shain et al., 2016),
I right-branching baseline: left children are always terminals (words).

Evaluate vs. unlabeled versions of human-annotated ‘gold standard’ trees:
I recall: % of actual constituents that model predicts.
I precision: % of model’s predictions that are actual constituents.
I F1 score: product of recall & precision / average of recall & precision.
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Results

Results on constituent trees with punctuation removed after training:

System Precision Recall F1
(rival) CCL 60.1 48.7 53.8
(rival) UPPARSE 60.5 51.9 55.9
(rival) UHHMM 55.5 69.3 61.7
(rival) BMMM+DMV 63.5 63.3 63.4
(rival) UHHMM(flattened) 62.9 68.4 65.6
This model w. D=1,K=15 55.5 69.3 61.6
This model w. D=1,K=30 61.6 76.7 68.4
This model w. D=1,K=45 53.9 66.9 59.5
This model w. D=2,K=15 50.6 63.2 56.2
(baseline) Right-branching 68.7 85.8 76.3

This model is competitive with rivals, but not better than right-branching.



Evaluation Parameters

Model also learns category labels — do these correspond to NP, PP, etc?

Problem: different theories make different predictions about category labels.

Solution: most theories make same predictions about NPs; just test these.

I NP recall: % of actual NPs hypothesized with any label,
I NP identification: % of actual NPs hypothesized w. label mapped to NP.

(Mapping function trained on separate data w. human NP annotation.)
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Results

Results for noun phrase recall and noun phrase identification:

System NP recall NP ident
(rival) CCL 32.4 -
(rival) UPPARSE 69.1 -
(rival) UHHMM (flattened) 61.4 34.7
(rival) BMMM+DMV 71.3 60.8
This model w. D=1,K=15 81.9 57.4
This model w. D=1,K=30 80.1 63.1
This model w. D=1,K=45 77.1 60.8
This model w. D=2,K=15 86.3 63.1
Right-branching baseline 64.2 -

Category labels appear to be quite coherent!

(Similar results obtain for PP and, to a lesser extent, VP.)
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Structures hypothesized during training
Iteration 5 (first iteration after re-initialization trials) — not much familiar:
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Structures hypothesized during training
Iteration 6:
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Structures hypothesized during training
Iteration 7:
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Structures hypothesized during training
Iteration 8:
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Structures hypothesized during training
Iteration 9:
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Structures hypothesized during training
Iteration 10 — the model discovers on and the co-occur a lot, clumps them:
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Structures hypothesized during training
Iteration 25 (now showing every 25th iteration):
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Structures hypothesized during training
Iteration 50:
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Structures hypothesized during training
Iteration 75:
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Structures hypothesized during training
Iteration 100:
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Structures hypothesized during training
Iteration 125:
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Structures hypothesized during training
Iteration 150:
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Structures hypothesized during training
Iteration 200 (now showing every 50th iteration):
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Structures hypothesized during training
Iteration 250 – determiners (the/another), nouns (table/cookie) clumped:
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Structures hypothesized during training
Iteration 250 – learner can re-use Det+Noun rule more than Prep+Det:
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Structures hypothesized during training
Iteration 250 – also, verb have clumped with noun phrase another cookie:
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Structures hypothesized during training
Iteration 300:
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Structures hypothesized during training
Iteration 350 – preposition on and noun phrase the table now clumped:

1

1

6

6

.

4

12

10

table

13

the

2

on

4

right

9

11

12

10

cookie

13

another

7

have

15

you



Structures hypothesized during training
Iteration 400:
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Structures hypothesized during training
Iteration 450:
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Structures hypothesized during training
Iteration 500 — category labels for Prep/Det/Noun/NP/PP mostly stable:
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Structures hypothesized during training
Iteration 550:
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Structures hypothesized during training
Iteration 600 — adverb right clumped with prepositional phrase on the table:
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Structures hypothesized during training
Iteration 650 — adverb right now clumped with sentence you . . . cookie:

1

6

.

4

3

12

10

table

13
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2

on

9

3

right

9

11

12
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cookie
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another

7

have
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you



Structures hypothesized during training
Iteration 700 — re-type noun phrase you and verb phrase have . . . cookie:

1

6

.

4

3

12

10

table

13

the

2

on

9

3

right

9

3

12

10

cookie

13

another

2

have

9

you

Not much structural change anymore.



Structures hypothesized during training
Iteration 750 – change back noun phrase and verb phrase:

1

6

.

4

3

12

10

table

13

the

2

on

9

3

right

9

11

12

10

cookie

13

another

7

have
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you



Structures hypothesized during training
Final constituent types consistent with linguistic theory:

1≈S

6≈PU

.

4≈S

3≈ADVP

12≈NP

10≈N

table

13≈D

the

2≈P

on

9≈S

3≈ADVP

right

9≈S

11≈VP

12≈NP

10≈N

cookie

13≈D

another

7≈V

have

15≈NP

you



Conclusion

In this talk:

1. Learning possible rules from just words is hard: anything’s possible!

2. But defined probabilistically, grammar learning is feasible.

3. This makes justification of Universal Grammar more tenuous.

Thanks!
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