
LING4400: Lecture Notes 2
Simple Formal Logic

Last time we looked at inferences over sentence meanings. Now we’ll see where they come from.

We’ll build sentence meanings in a simple and expressive higher-order logic [Church, 1940].
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2.1 Types of mental objects [Church, 1940]
We’ll formalize sentence meanings using entities, truth values and functions of different types

(these are mental objects we can define associations over, and we’ll use bold font for them here):

1. entities (type ‘e’): what associations can be about (countries, people, units of volume, ...).

For example, a small geographical domain may have two entities: Laos and Togo.

2. truth values (type ‘t’): values indicating belief or disbelief in certain kinds of associations.

For example, here are the standard truth values we use: False and True.

3. functions (type ‘⟨α, β⟩’): map instances of input type α to instances of output type β.

For example, an ‘Is it coastal?’ function from e to t (as spreadsheet table):
input output
Laos : False
Togo : True

.

These functions are associations listeners make in their minds, e.g.: Togo evokes True.

Functions may have other functions as inputs or outputs, yielding an unlimited number of types:

⟨e, t⟩ maps entities to truth values
⟨e, ⟨e, t⟩⟩ maps entities to other functions which then map entities to truth values
⟨⟨e, t⟩, t⟩ maps functions that map from entities to truth values to other truth values
⟨e, ⟨⟨e, t⟩, t⟩⟩ . . .

Functions with other functions as input or output will have nested associations, like Russian dolls.
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For example, this function of type ⟨e, ⟨e, t⟩⟩ maps entities to functions from entities to truth values:

input output

Laos :
input output
Laos : True
Togo : False

Togo :
input output
Laos : False
Togo : True

Functions must be defined for all instances of the input type, so tables for e.g. ⟨⟨e, t⟩, t⟩ can get big!

That’s because there are oi instances of functions from i inputs to o outputs. (8 ⟨e, t⟩’s if 3 e’s, 2 t’s.)

(Functions with functions as input are complicated, so we’ll look at logics with limited inputs first.)

Practice 2.1:

How many functions of type ⟨e, t⟩ are there in a world with two e’s: (A,B), and two t’s?

Practice 2.2:

List all the possible functions of type ⟨e, t⟩ in a world with two e’s: (A,B), and two t’s.

2.2 World models: collections of listeners’ associations
Formally, we model language as transmitting associations from speakers’ to listeners’ minds.

We model listeners’/speakers’ minds as world models – collections of associations about the world.

A world model M defines:

1. a domain DM
α for each type α – a (possibly infinite) set of instances of that type in M;

for example, in our geographical model, the domain of entities DM
e would be Laos and Togo

(domains for functions are all possible mappings between domains of input and output types);

2. an interpretation function ~ϕ�M – associating logical expressions ϕ into these domains;

for example, the interpretation ~Coastal�M would be the association:
input output
Laos : False
Togo : True

.

We mostly define functions in world models and get sentence meanings via composition rules.
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An interpretation function is itself an association from logical expressions to mental objects.

World models are complete. Listeners with incomplete knowledge consider multiple world models.

A point about defining formal languages:

• stuff inside ‘~’ and ‘�’ brackets is the formal language we’re defining;

• stuff outside brackets is a metalanguage we’re using to define it: tables, pictures, words, etc.

except sometimes we use metavariables (ϕ,χ,ψ,ω) inside brackets to generalize our claims.

2.3 Logical expressions: representations of ideas (and how to build them)
Logical expressions (what ϕ ranges over, above) are what interpretation functions interpret.

The output of an interpretation function is called a denotation or extension.

We’ll start with some basic expressions, which consist of just a single term:

1. If ϕ is a constant, the interpretation is defined by the world model.

For example, here are some constant expressions of type e (we’ll use this font for constants):

~Laos�M = Laos ,
~Togo
±

expression

�M = Togo
±

mental object

,

(we’ll let the name of every entity in a world model be a constant denoting that entity);

and here’s a constant function expression of type ⟨e, t⟩:

~Coastal
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
expression

�M =

input output
Laos ∶ False
Togo ∶ True
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mental object

.

(We’ll try to keep constants close to words, but understand they only mean one thing.)

2. Expressions can also be variables if bound by a lambda abstraction, discussed below.

If ϕ is not a constant or variable, the interpretation is compositional (depends entirely on its parts).

We’ll need only two kinds of compositional rules in our logical expressions. These will:

1. apply functions ψ of type ⟨α, β⟩ to arguments χ of type α to get output ω = ψ χ of type β;
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this just looks up the output ω corresponding to the input ~χ�M in the function (table) ~ψ�M:

~ ψ χ
°

expression

�M = ω such that ~ψ�M =

input output
⋮ ⋮

~χ�M ∶ ω
⋮ ⋮

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mental object

,

for example, applying Coastal (type ⟨e, t⟩) to Laos (type e) looks up Laos in ~Coastal�M:

~Coastal Laos�M = False

(here ‘Coastal’ is the ψ, ‘Laos’ is the χ, ‘Laos’ is the ~χ�M, and ‘False’ is the ω);

2. abstract expressions ψ of type β over variables χ of type α to get functions λχ∶α ψ of type ⟨α, β⟩;

this creates a new function (table) with input drawn from the domain DM
α of type α:

~λχ∶α
°

input of type α

ψ
®

output of type β
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expression of type ⟨α, β⟩

�M =

input output
ι1 ∶ ~ψ but replacing χ with ϕ1 where ~ϕ1�M = ι1�M

ι2 ∶ ~ψ but replacing χ with ϕ2 where ~ϕ2�M = ι2�M

⋮ ⋮

for ι1, ι2, ... in DM
α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mental object

,

for example, abstracting Coastal x (type t) over variable x (type e) gives an ⟨e, t⟩ function:

~ λx∶e¯
input of type e

Coastal x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

output of type t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expression of type ⟨e, t⟩

�M =

input output
Laos ∶ False
Togo ∶ True

(you will also sometimes see λχ∶α ψ notated with a dot after the variable: λχ∶α . ψ).

Variables can only appear in the ψ of the lambda subscripted by that variable.

Another way to think of these abstractions is as function definitions, as used in algebra:

f (x) = Coastal x or f x = Coastal x

except they define only the function, so the argument is moved to the other side of the equals:

f = λx∶e Coastal x

To be strict, we should also add a composition rule to:
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3. parenthesize expressions ψ, in order to group their function applications:

~(ψ)�M = ~ψ�M

This doesn’t do anything itself, but helps us tell which functions to apply in what order.

For example, the two parenthesizations below mean different things:

~(Not Erupt) Twice�M ≠ ~Not (Erupt Twice)�M

The first expression (‘two lulls’) applies Not to Erupt, then applies the result to Twice.

The second expression (‘<2 eruptions’) applies Erupt to Twice, then applies Not to the result.

With no parens, we assume the first grouping (so application is left-to-right associative):

~Not Erupt Twice�M = ~(Not Erupt) Twice�M

But abstractions group the lambda operators last (so abstraction is right-to-left associative):

~λx∶e λy∶e Contain x y�M = ~λx∶e (λy∶e (Contain x y))�M

These kinds of expressions are called lambda calculus, because of all the lambdas.

Practice 2.3:

Write a lambda calculus function that multiplies a number by two and then adds one. You can use
the symbols ‘×’ and ‘+’ inside your function.

Practice 2.4:

Write a lambda calculus expression that applies your function above to the number 3. You don’t
have to show the result.

2.4 Drawing expressions as trees
We can draw lambda calculus expressions as trees to see how they are constructed.

These will look like family trees with (always single) parents on top and children below.

Basic expressions like constants and variables will have no children. As for the others:

1. we draw applications as branches from a parent of type β to children ⟨α, β⟩ and α:
β

α⟨α, β⟩

for example:
t

⟨e, t⟩⟨⟨e, t⟩, t⟩
where α = ⟨e, t⟩ and β = t.
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2. we draw abstractions as branches from parent ⟨α, β⟩ to children λx∶α and β:
⟨α, β⟩

βλχ∶α

for example:
⟨t, ⟨t, t⟩⟩

⟨t, t⟩λp∶t

where α = t and β = ⟨t, t⟩.

Remember: the λχ∶α is not a variable and has no type — it’s a literal lambda in the expression.

3. we draw parentheses as branches from a parent of type α to children (, α and ):
α

)α(

for example:
⟨e, t⟩

)⟨e, t⟩(

where α = ⟨e, t⟩.

As a complete example, the derivation tree for (λx∶e Coastal x) is:

⟨e, t⟩

)

)

⟨e, t⟩

t

e

x

⟨e, t⟩

Coastal

λx∶e

λx∶e

(

(

From top to bottom, we have a parentheses on top, then an abstraction, and an application below.

We will call these derivation trees, or ‘gray trees’. They have basic expressions as leaves.

2.5 Using composition rules to obtain sentence meanings
We formally translate English sentences into logic expressions by associating words with functions.

We use variants of composition rules when we assemble word meanings into sentence meanings:

Sentence
(Contain Laos Asia) ∶ t

Verb Phrase
(Contain Laos) ∶ ⟨e, t⟩

Noun Phrase
Laos ∶ e

Laos

Transitive Verb
Contain ∶ ⟨e, ⟨e, t⟩⟩

contains

Noun Phrase
Asia ∶ e

Asia

Here, words corresponding to basic expressions (constants) are composed into phrases and clauses.
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Note the top branch applies a function on the right with an argument on the left. That’s backward!

In building logic translations for sentences, this is called Backward Function Application:

g ∶ α f ∶ ⟨α, β⟩ ⇒ ( f g) ∶ β (Backward Function Application)

We use this variant together with normal Forward Function Application in translating to logic:

f ∶ ⟨α, β⟩ g ∶ α ⇒ ( f g) ∶ β (Forward Function Application)

These rules say if you combine the two child expressions on the left you get the parent on the right.

We will call these additional composision rules translation rules.

They define how to build trees like the one above from the bottom up.

We will call these resulting trees translation trees or ‘orange trees’. They have words as leaves.

2.6 Rules for simplifying expressions
There are also reduction rules we use to simplify lambda calculus expressions. They ensure:

1. The denotation of a function f is the same as that of λx∶α f x in all world models M:

~ f �M = ~λx∶α f x�M.

For example:

~Coastal�M = ~λx∶e Coastal x�M =

input output
Laos ∶ False
Togo ∶ True

.

This is called eta conversion or η-conversion.

2. A function abstraction also denotes the same if all instances of the variable are renamed:

~λx∶α . . . x . . . x . . .�M = ~λy∶α . . . y . . . y . . .�M.

This is called alpha conversion or α-conversion.

3. A function application is the same as the function with no lambda and argument substituted:

~(λx∶α . . . x . . . x . . . ) a�M = ~. . .a . . .a . . .�M.

(We remove the first lambda and replace all instances of that variable with the first argument.)

For example:

~(λx∶e Contains x Asia) Laos�M = ~Contains Laos Asia�M = True.

This is called beta reduction or β-reduction.

These rules let us simplify lambda calculus expressions without calculating denotations.
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Practice 2.5:

Beta reduce the following expression:

(λx∶e (And (Coastal x) (Capital x))) Laos

Practice 2.6:

Beta reduce the following expression:

(λy∶e λx∶e Contain y x) Laos Asia
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