LING4400: Lecture Notes 3 Propositional Logic

Contents

3.1	Basic propositional connectives [Boole, 1847]	1
3.2	Derived propositional connectives	3

So far we looked at a general framework for logic based on entities, truth values and functions. Today we'll look at some functions that define a very basic kind of logic, just over truth values.

3.1 Basic propositional connectives [Boole, 1847]

1. One useful function is **negation**: Not or \neg .

It maps each truth value to the opposite truth value.

Here's the type: $\langle t, t \rangle$.

And here's the truth table:

	input output
[[Not]] ^M =	False : True
	True : False

So for example, if we have some propositions in our world model *M*:

 $\llbracket IsRainy \rrbracket^M = False$

Then we can negate them:

 $[[Not IsRainy]]^M = True$ $[[\neg IsRainy]]^M = True$

Here's the derivation tree:

2. Another useful function is **conjunction**: And or \wedge .

It maps truth values to functions that map other truth values to still other truth values. Here's the type: $\langle t, \langle t, t \rangle \rangle$. And here's the truth table:

[[And]] ^M =	input	output
	False :	input output False : False True : False
	True :	input output False : False True : True

So for example, if we have some propositions in our world model *M*:

 $[[IsSunny]]^M = True$ $[[IsRainy]]^M = True$

Then we can conjoin them:

$$[And IsSunny IsRainy]^M = True$$

Here's the derivation tree:

Practice 3.1:

What is the interpretation of the expression And True?

Above we assume function application is left-to-right associative, so it's interpreted like:

 $[[(And IsSunny)] IsRainy]]^M = True$ this output is the second function

This means a function in the output of another function acts like a two-argument function. This is called a **Curried** function (named after Haskell Curry, who did it a lot). These kinds of functions are also often written in between their arguments:

 $\llbracket p \land q \rrbracket^M = \llbracket \text{And } p \ q \rrbracket^M$

For example:

 $[[IsSunny \land IsRainy]]^M = True$

This is called **infix** notation.

We can draw trees for expressions in infix notation using flattened rules:

For example:

Practice 3.2:

Draw a derivation tree showing types for the expression $\lambda_{p:t} \lambda_{q:t}$ Not (And p q).

3.2 Derived propositional connectives

From these basic propositional functions, we can derive two more useful functions:

1. We can derive **disjunction** (Or or \vee) as a negated conjunction of negated propositions:

$$\llbracket \mathsf{Or} \rrbracket^M = \llbracket \lambda_{p:t} \ \lambda_{q:t} \ \mathsf{Not} \ (\mathsf{And} \ (\mathsf{Not} \ p) \ (\mathsf{Not} \ q)) \rrbracket^M$$

(In other words, it's *not* true that *neither* of *p* and *q* is true. At least one is true.)

This is equivalent to a $\langle t, \langle t, t \rangle \rangle$ function with the following truth table:

[[Or]] ^M =	input	output
	False :	input output False : False True : True
	True :	input output False : True True : True

2. We can derive **implication** (If or \rightarrow) as a disjunction with the first proposition negated:

 $\llbracket [\mathsf{If}] \rrbracket^M = \llbracket \lambda_{p:\mathsf{t}} \lambda_{q:\mathsf{t}} \operatorname{Or} (\operatorname{Not} p) q \rrbracket^M$

(In other words, if p is true then q is true; if p is false then q doesn't matter.)

This is equivalent to a $\langle t, \langle t, t \rangle \rangle$ function with the following truth table:

	input	output
[[If]] ^M =	False :	input output False : True True : True
	True :	input output False : False True : True

These are vacuously true for false premises in the sense that rules can be tacitly obeyed:

(1) If Mali is coastal, you have to do four thousand push-ups.

These functions are also often written using infix notation:

$$\llbracket p \lor q \rrbracket^M = \llbracket \mathsf{Or} \ p \ q \rrbracket^M$$
$$\llbracket p \to q \rrbracket^M = \llbracket \mathsf{If} \ p \ q \rrbracket^M$$

For example:

 $[[IsSunny \lor IsRainy]]^{M} = True$ $[[IsSunny \to IsRainy]]^{M} = True$

Again, we can draw trees for expressions in infix notation using flattened rules:

For example:

Logic with just these four functions is called **propositional logic**.

Practice 3.3:

Write an expression to produce the following truth table using conjunction and negation:

input	output
	input output
False :	False : False
	True : True
	input output
True :	False : False
	True : False

References

[Boole, 1847] Boole, G. (1847). *The mathematical analysis of logic: being an essay towards a calculus of deductive reasoning*. Cambridge: Macmillan, Barclay, & Macmillan.