LING4400: Lecture Notes 4 Predicates and operators

Contents

4.1	Predicates	1
4.2	Operator functions	3

So far we looked at a general framework for logic and functions on propositions (truth values). Today we'll look at some functions that define a fairly rich kind of logic which is widely used.

4.1 Predicates

Functions that map one or more entities to truth values are called **predicates**.

They have a variety of types: $\langle e, t \rangle$, $\langle e, \langle e, t \rangle \rangle$, $\langle e, \langle e, \langle e, t \rangle \rangle \rangle$, ...

Their function tables depend on the number of inputs they have:

1. **Properties** or **unary predicates** (with one argument) look like this:

$$[[Coastal]]^{M} = \begin{cases} input & output \\ Laos : False \\ Mali : False \\ Togo : True \end{cases}$$

They can also be called **characteristic functions** or **sets**.

2. **Relations** or **binary predicates** (with two arguments) look like this:

We sometimes order the arguments backward to make function applications align with syntax. Composing from the bottom up, direct objects or preposition complements compose first:

This is an **isomorphism**: a mapping (from syntax to semantics) preserving relations (structure). Later we'll see this helps when phrases are conjoined: *Africa* [contains Mali and contains Togo].

Some common relations of type $\langle e, \langle e, t \rangle \rangle$ (actually some of them are 'polymorphic' $\langle \alpha, \langle \alpha, t \rangle \rangle$):

1. **equality** (infix):

[Equal
$$\varphi \psi$$
]^M = [[$\varphi = \psi$]]^M holds if and only if [[φ]]^M = [[ψ]]^M for example:

[Equal Mali Togo]]^M = [[Mali = Togo]]^M = False

2. **inequality** (infix):

[Not (Equal
$$\varphi \psi$$
)]]^M = [[$\varphi \neq \psi$]]^M holds if and only if [[φ]]^M \neq [[ψ]]^M for example:

[Not (Equal Mali Togo)]]^M = [[Mali \neq Togo]]^M = **True**

3. **less than** (infix, of numbers):

[LessThan
$$\varphi \psi$$
]]^M = [[$\varphi < \psi$]]^M holds if and only if [[φ]]^M < [[ψ]]^M for example: [LessThan 2 3]]^M = [[2 < 3]]^M = **True**

4. **greater than** (infix, of numbers):

[GreaterThan
$$\varphi \psi$$
]]^M = [[$\varphi > \psi$]]^M holds if and only if [[φ]]^M > [[ψ]]^M for example: [GreaterThan 23]]^M = [[2 > 3]]^M = False

Again, we can draw trees for these expressions in infix notation using flattened rules:

For example:

4.2 Operator functions

Logical expressions can also contain **operators** of type $\langle e, \langle e, e \rangle \rangle$:

1. **addition** (infix, of numbers):

$$\llbracket \mathsf{Sum} \ \varphi \ \psi \rrbracket^M = \llbracket \varphi + \psi \rrbracket^M = \llbracket \varphi \rrbracket^M + \llbracket \psi \rrbracket^M$$

for example:

$$[[Sum 2 3]]^M = [[2 + 3]]^M = 5$$

2. **multiplication** (infix, of numbers):

$$\llbracket \mathsf{Prod} \ \varphi \ \psi \rrbracket^M = \llbracket \varphi \times \psi \rrbracket^M = \llbracket \varphi \rrbracket^M \times \llbracket \psi \rrbracket^M$$

for example:

$$[Prod 2 3]^M = [2 \times 3]^M = 6$$

Again, we can draw trees for these expressions in infix notation using flattened rules:

For example:

