LING4400: Lecture Notes 4 Predicates and operators

Contents

4.1 Predicates

4.2 Operator functions . 3

So far we looked at a general framework for logic and functions on propositions (truth values).
Today we'll look at some functions that define a fairly rich kind of logic which is widely used.

4.1 Predicates

Functions that map one or more entities to truth values are called predicates.
They have a variety of types: $\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle,\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle, \ldots$
Their function tables depend on the number of inputs they have:

1. Properties or unary predicates (with one argument) look like this:

\llbracket Coastal $\rrbracket^{M}=$| input output | |
| :--- | :--- |
| | Laos : False
 Mali $:$ False
 Togo : True |

They can also be called characteristic functions or sets.
2. Relations or binary predicates (with two arguments) look like this:

We sometimes order the arguments backward to make function applications align with syntax. Composing from the bottom up, direct objects or preposition complements compose first:

This is an isomorphism: a mapping (from syntax to semantics) preserving relations (structure).
Later we'll see this helps when phrases are conjoined: Africa [contains Mali and contains Togo].
Some common relations of type $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$ (actually some of them are 'polymorphic' $\langle\alpha,\langle\alpha, \mathrm{t}\rangle\rangle$):

1. equality (infix):
\llbracket Equal $\varphi \psi \rrbracket^{M}=\llbracket \varphi=\psi \rrbracket^{M}$ holds if and only if $\llbracket \varphi \rrbracket^{M}=\llbracket \psi \rrbracket^{M}$
for example:

$$
\llbracket \text { Equal Mali Togo } \rrbracket^{M}=\llbracket \mathrm{Mali}=\text { Togo } \rrbracket^{M}=\text { False }
$$

2. inequality (infix):
$\llbracket \operatorname{Not}($ Equal $\varphi \psi) \rrbracket^{M}=\llbracket \varphi \neq \psi \rrbracket^{M}$ holds if and only if $\llbracket \varphi \rrbracket^{M} \neq \llbracket \psi \rrbracket^{M}$
for example:

$$
\llbracket \text { Not }(\text { Equal Mali Togo }) \rrbracket^{M}=\llbracket \text { Mali } \neq \text { Togo } \rrbracket^{M}=\text { True }
$$

3. less than (infix, of numbers):
\llbracket LessThan $\varphi \psi \rrbracket^{M}=\llbracket \varphi<\psi \rrbracket^{M}$ holds if and only if $\llbracket \varphi \rrbracket^{M}<\llbracket \psi \rrbracket^{M}$
for example:

$$
\llbracket \text { LessThan } 23 \rrbracket^{M}=\llbracket 2<3 \rrbracket^{M}=\text { True }
$$

4. greater than (infix, of numbers):
\llbracket GreaterThan $\varphi \psi \rrbracket^{M}=\llbracket \varphi>\psi \rrbracket^{M}$ holds if and only if $\llbracket \varphi \rrbracket^{M}>\llbracket \psi \rrbracket^{M}$ for example:

$$
\llbracket \text { GreaterThan } 23 \rrbracket^{M}=\llbracket 2>3 \rrbracket^{M}=\text { False }
$$

Again, we can draw trees for these expressions in infix notation using flattened rules:

For example:

4.2 Operator functions

Logical expressions can also contain operators of type $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{e}\rangle\rangle$:

1. addition (infix, of numbers):

$$
\llbracket \operatorname{Sum} \varphi \psi \rrbracket^{M}=\llbracket \varphi+\psi \rrbracket^{M}=\llbracket \varphi \rrbracket^{M}+\llbracket \psi \rrbracket^{M}
$$

for example:

$$
\llbracket \text { Sum } 23 \rrbracket^{M}=\llbracket 2+3 \rrbracket^{M}=\mathbf{5}
$$

2. multiplication (infix, of numbers):

$$
\llbracket \operatorname{Prod} \varphi \psi \rrbracket^{M}=\llbracket \varphi \times \psi \rrbracket^{M}=\llbracket \varphi \rrbracket^{M} \times \llbracket \psi \rrbracket^{M}
$$

for example:

$$
\llbracket \operatorname{Prod} 23 \rrbracket^{M}=\llbracket 2 \times 3 \rrbracket^{M}=\mathbf{6}
$$

Again, we can draw trees for these expressions in infix notation using flattened rules:

For example:

