LING4400: Lecture Notes 7 Substances

Contents

7.1	Substances and quantifiers	1
7.2	Measure phrases as quantifiers over substances	3
7.3	Comparative adjectives use substances	3
7.4	Superlative adjectives use substances	4
7.5	Antonyms	4

7.1 Substances and quantifiers

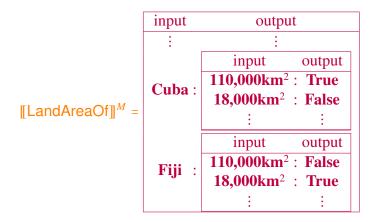
Substances (e.g. *land*) behave like entities (e.g. *islands*) in quantifiers:

- (1) a. 8 islands are in Samoa.
 b. 4 islands in Samoa are in Atau.
 c. (entailed by 1a and 1b:) Half the islands in Samoa are in Atau.
- (2) a. 2,800 square kilometers of land are in Samoa.
 - b. 400 square kilometers of land in Samoa are in Atau.
 - c. (entailed by 2a and 2b:) A seventh of the land in Samoa is in Atau.

and in comparatives:

- (3) a. 1,600 islands are in Cuba.
 - b. 300 islands are in Fiji.
 - c. (entailed by 3a and 3b:) More islands are in Cuba than are in Fiji.
- (4) a. 110,000 square kilometers of land are in Cuba.
 - b. 18,000 square kilometers of land are in Fiji.
 - c. (entailed by 4a and 4b:) More land is in Cuba than is in Fiji.

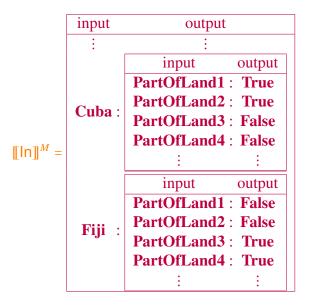
Three ways to model substances like land:


1. We can model land like an operator:

$$[[LandAreaOf]]^{M} = \frac{input output}{Cuba : 110,000km^{2}}.$$

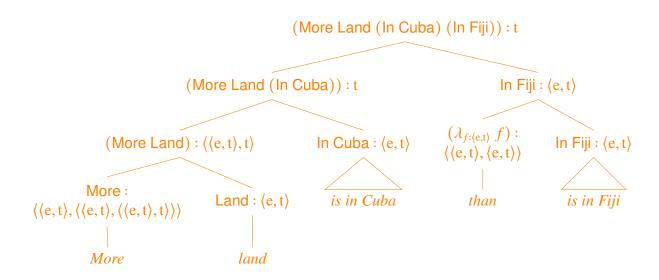
Fiji : 18,000km².

But this would require a different More function that compares ...km² entities.


We'd have to learn these two More's separately, making this analysis less appealing.

2. Or we can model land like a predicate with an area argument:

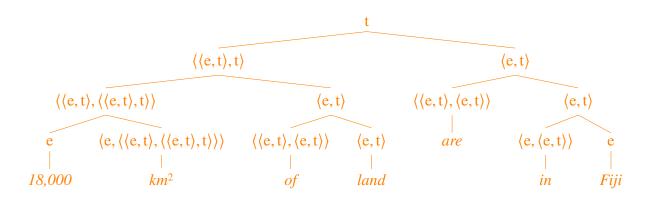
This still requires different functions for normal ('count') entities and ...km² entities.


3. Or we can model land as a predicate that takes each particle of land as an argument:

This allows the same quantifier functions to be used for substances and entities.

 $\llbracket \mathsf{Most} \rrbracket^M = \llbracket \lambda_{r:\langle e,t \rangle} \ \lambda_{s:\langle e,t \rangle} \ |\lambda_{x:e} \ r \ x \land s \ x| \times 2 > |r| \ \rrbracket^M$ $\llbracket \mathsf{More} \rrbracket^M = \llbracket \lambda_{r:\langle e,t \rangle} \ \lambda_{s:\langle e,t \rangle} \ \lambda_{t:\langle e,t \rangle} \ |\lambda_{x:e} \ r \ x \land s \ x| > |\lambda_{x:e} \ r \ x \land t \ x| \ \rrbracket^M$

This requires lots of particles in our world model, but they don't need to be learned.



7.2 Measure phrases as quantifiers over substances

We can have absolute quantifiers over substances using measure phrases.

For example, suppose our particles are square millimeters:

 $\llbracket \mathsf{SquareKilometer} \rrbracket^M = \llbracket \lambda_{n:e} \ \lambda_{r:\langle e,t \rangle} \ \lambda_{s:\langle e,t \rangle} \ |\lambda_{x:e} \ r \ x \land s \ x| = n \times 1,000,000,000,000 \rrbracket^M$

7.3 Comparative adjectives use substances

This observation:

(5) a. Cuba is larger than Fiji.

b. (entails and entailed by 5a:) More land is in Cuba than is in Fiji.

means we can do this:

$$\llbracket \text{LargerThan} \rrbracket^{M} = \llbracket \lambda_{y:e} \ \lambda_{x:e} \text{ More Land } (\ln x) \ (\ln y) \rrbracket^{M}$$

7.4 Superlative adjectives use substances

And this observation:

(6) a. *Greenland is the largest island.*

b. (entails and entailed by 6a:) *Greenland is an island and no island is larger than it.*

means we can do this:

```
\llbracket Largest \rrbracket^{M} = \llbracket \lambda_{r:(e,t)} \ \lambda_{x:e} \ r \ x \land None \ r \ (\lambda_{v:e} \ More \ Land \ (ln \ y) \ (ln \ x)) \rrbracket^{M}
```

Also, ordinal superlatives:

 $[[ThirdLargest]]^{M} = [[\lambda_{r:(e,t)} \lambda_{x:e} r x \land ExactlyTwo r (\lambda_{y:e} More Land (In y) (In x))]]^{M}$

7.5 Antonyms

Adjectives that are **gradable** (which have comparatives and superlatives) also have **antonyms**. Antonyms are gradable in opposite directions, using comparative quantifier Less instead of More:

```
[[Smallest]]^{M} = [[\lambda_{r:(e,t)} \lambda_{x:e} r x \land None r (\lambda_{y:e} Less Land (In y) (In x))]]^{M}
```