LING4400: Lecture Notes 9 Set Theory vs. Type Theory

Contents

9.1 Russell's paradox [Russell, 1902]
1
9.2 Set theoretic functions in type theory
..... 2

You may be familiar with notation and concepts from set theory [Cantor, 1874, Zermelo, 1908]:

- element: $x \in S$
- subset: $r \subset s$
- superset: $r \supset s$
- intersection: $r \cap s$
- union: $r \cup s$
- ...

People have used it to define foundational concepts in mathematics (over sets of numbers).
Type theory is like set theory in that it can serve as a basis for math, but it's more constrained.

9.1 Russell's paradox [Russell, 1902]

Why do we want a more constrained basis for logical meaning?
In basic set theory, a set can include $a-n-y-t-h-i-n-g$: entities, sets of entities, sets of sets...!
This power corrupts it!
For example, you can do this:

1. Define the set of all sets that do not contain themselves.
2. Now it contains itself only if it does not contain itself.

This is called Russell's paradox.

Type theory is instead defined by construction: complex types are defined in terms of simpler ones.
This means no type can contain itself.
(You can't even ask it in lambda calculus: An $\langle\mathrm{e}, \mathrm{t}\rangle$ can't apply to an $\langle\mathrm{e}, \mathrm{t}\rangle$ - it's ungrammatical!) Good, because we'll never need or want that! In nature, things can't generally contain themselves.

9.2 Set theoretic functions in type theory

We can rescue some notation from set theory (un-Googlable symbols make us look smart!).
But we have to / get to assume the elements in our sets are all of the same type.
So we can notate sets of type $\langle\alpha, \mathrm{t}\rangle$ (with elements of type α) as:

1. set roster - type $\langle\alpha, \mathrm{t}\rangle$

$$
\llbracket\{\varphi, \chi, \psi, \ldots\} \rrbracket^{M}=\llbracket \lambda_{x: \alpha} x=\varphi \vee x=\chi \vee x=\psi \vee \ldots \rrbracket^{M}
$$

for example, an expression meaning the set containing Laos, Mali and Togo:

$$
\llbracket\{\text { Laos, Mali, Togo }\} \rrbracket^{M}=\llbracket \lambda_{x: \mathrm{e}} x=\text { Laos } \vee x=\text { Mali } \vee x=\text { Togo } \rrbracket^{M}=
$$

input	output
Africa :	False
Asia $:$	False
Laos $:$	True
Mali $:$	True
Togo : True	

2. set comprehension - type $\langle\alpha, \mathrm{t}\rangle$

$$
\llbracket\{x: \alpha \mid \varphi\} \rrbracket^{M}=\llbracket \lambda_{x: \alpha} \varphi \rrbracket^{M}
$$

for example, an expression meaning the set of things Asia contains:

$$
\llbracket\{x: \mathrm{e} \mid \text { Contain } x \text { Asia }\} \rrbracket^{M}=\llbracket \lambda_{x: \mathrm{e}} \text { Contain } x \text { Asia } \rrbracket^{M}
$$

3. null set - type $\langle\alpha, \mathrm{t}\rangle$

$$
\llbracket \varnothing \rrbracket^{M}=\llbracket \lambda_{x: \alpha} \text { False } \rrbracket^{M}
$$

We can draw derivation trees for these expressions in circumfix notation using flattened rules:

Note that we can have sets of any type (e.g. $\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$), since α can be any type (e.g. $\alpha=\langle\mathrm{e}, \mathrm{t}\rangle$):

We also have relations between elements of type α and sets of type $\langle\alpha, \mathrm{t}\rangle$:
4. element - type $\langle\alpha,\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$, true if element x satisfies the characteristic function of set s :

$$
\llbracket x \in s \rrbracket^{M}=\llbracket s x \rrbracket^{M}
$$

for example, Mali is an element of the set containing Laos, Mali and Togo:
\llbracket Mali $\in\{$ Laos, Mali, Togo $\} \rrbracket^{M}=\llbracket\left(\lambda_{x \text { ee }} x=\right.$ Laos $\vee x=$ Mali $\vee x=$ Togo $)$ Mali $\rrbracket^{M}=$ True
5. negated element - type $\langle\alpha,\langle\langle\alpha, t\rangle, t\rangle\rangle$, true if x does not satisfy s :

$$
\llbracket x \notin s \rrbracket^{M}=\llbracket \operatorname{Not}(s x) \rrbracket^{M}
$$

for example, Peru is not an element of the set containing Laos, Mali and Togo:
\llbracket Peru $\notin\{$ Laos, Mali, Togo $\} \rrbracket^{M}=\llbracket \operatorname{Not}\left(\left(\lambda_{x: e} x=\operatorname{Laos} \vee x=\right.\right.$ Mali $\vee x=$ Togo $)$ Peru $) \rrbracket^{M}=$ True

We can draw derivation trees for these expressions in infix notation using flattened rules:

For example:

We also have relations between sets of type $\langle\alpha, \mathrm{t}\rangle$:
6. subset or equal - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$, true if all elements of r are elements of s :

$$
\llbracket r \subseteq s \rrbracket^{M}=\llbracket \forall x: \alpha<x \rightarrow s x \rrbracket^{M}
$$

for example, the set of Laos and Mali is a subset of or equal to the set of Laos, Mali, Togo:

$$
\{\text { Laos, Mali }\} \subseteq\{\text { Laos, Mali, Togo }\}
$$

7. superset or equal - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$, true if all elements of s are elements of r :

$$
\llbracket r \supseteq s \rrbracket^{M}=\llbracket \forall_{x: \alpha} s x \rightarrow r x \rrbracket^{M}
$$

for example, the set of Laos, Mali, Togo is a superset of or equal to the set of Laos and Mali:

$$
\{\text { Laos, Mali, Togo }\} \supseteq\{\text { Laos, Mali }\}
$$

8. proper subset/superset - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$, true if not equal and all in one are in other:

$$
\begin{aligned}
& \llbracket r \subset s \rrbracket^{M}=\llbracket r \neq s \wedge \forall_{x: \alpha} r x \rightarrow s x \rrbracket^{M} \\
& \llbracket r \supset s \rrbracket^{M}=\llbracket r \neq s \wedge \forall_{x: \alpha} s x \rightarrow r x \rrbracket^{M}
\end{aligned}
$$

for example, the set of Laos and Mali is a proper subset of the set of Laos, Mali and Togo:
$\{$ Laos, Mali $\} \subset\{$ Laos, Mali, Togo $\}$
9. negated subset/superset - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$, true if non-negated relation is false.

$$
\begin{aligned}
& \llbracket r \not \subset s \rrbracket^{M}=\llbracket \neg\left(r \neq s \wedge \forall_{x: \alpha} r x \rightarrow s x\right) \rrbracket^{M} \\
& \llbracket r \not p s \rrbracket^{M}=\llbracket \neg\left(r \neq s \wedge \forall_{x: \alpha} s x \rightarrow r x\right) \rrbracket^{M}
\end{aligned}
$$

for example, the set of Laos and Peru is not a proper subset of the set of Laos and Mali:
$\{$ Laos, Peru $\} \not \subset\{$ Laos, Mali $\}$

We can draw derivation trees for these expressions in infix notation using flattened rules:

For example:

Practice 9.1:

Which of the following are true:

1. $\{$ Mali, Togo $\} \subseteq\{$ Mali, Togo $\}$
2. $\{$ Mali, Togo $\} \not \subset\{$ Mali, Togo $\}$
3. $\varnothing \in\{$ Mali, Togo $\}$
4. $\varnothing \subset\{$ Mali, Togo $\}$

We also have operators from sets of type $\langle\alpha, \mathrm{t}\rangle$ to sets of type $\langle\alpha, \mathrm{t}\rangle$:
10. intersection - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle,\langle\alpha, \mathrm{t}\rangle\rangle\rangle$, outputs the set of entities in both r and s :

$$
\llbracket r \cap s \rrbracket^{M}=\llbracket \lambda_{x: \alpha} r x \wedge s x \rrbracket^{M}
$$

for example, the intersection of the set of Laos and Mali with the set of Mali and Togo:

$$
\{\text { Laos, Mali }\} \cap\{\text { Mali, Togo }\}=\{\text { Mali }\}
$$

11. union - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle,\langle\alpha, \mathrm{t}\rangle\rangle\rangle$, outputs the set of entities in either r or s :

$$
\llbracket r \cup s \rrbracket^{M}=\llbracket \lambda_{x: \alpha} r x \vee s x \rrbracket^{M}
$$

for example, the union of the set of Laos and Mali with the set of Mali and Togo:

$$
\{\text { Laos, Mali }\} \cup\{\text { Mali, Togo }\}=\{\text { Laos, Mali, Togo }\}
$$

12. exclusion - type $\langle\langle\alpha, \mathrm{t}\rangle,\langle\langle\alpha, \mathrm{t}\rangle,\langle\alpha, \mathrm{t}\rangle\rangle\rangle$, outputs the set of entities in r but not in s :

$$
\llbracket r-s \rrbracket^{M}=\llbracket \lambda_{x: \alpha} r x \wedge \neg(s x) \rrbracket^{M}
$$

for example, the set of Laos and Mali excluding the set of Mali and Togo:

$$
\{\text { Laos, Mali }\}-\{\text { Mali, Togo }\}=\{\text { Laos }\}
$$

We can draw derivation trees for these expressions in infix notation using flattened rules:

For example:

We also have functions from sets of type $\langle\alpha, \mathrm{t}\rangle$ to sets of these sets, of type $\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle$:
13. power set - type $\langle\langle\alpha, \mathrm{t}\rangle, \mathrm{t}\rangle$, outputs the set of sets that are subsets of s :

$$
\llbracket \mathcal{P} s \rrbracket^{M}=\llbracket \lambda_{r:\langle\alpha, t\rangle} r \subseteq s \rrbracket^{M}
$$

for example, the power set of the set of Laos and Mali:

$$
\llbracket \mathcal{P}\{\text { Laos, Mali }\} \rrbracket^{M}=\llbracket\{\varnothing,\{\text { Laos }\},\{\text { Mali }\},\{\text { Laos, Mali }\}\} \rrbracket^{M}
$$

Derivation trees for these expressions use ordinary function application.
Note that the power set is not a set of entities (which would be type $\langle\alpha, \mathrm{t}\rangle$).
If we want to intersect or subset this, we need to generalize the above operations.
We'll do that later, using 'rule schemas'...

Practice 9.2:

Write an expression in set notation meaning the set of all sets with no elements.

Practice 9.3:

Write an expression in lambda calculus meaning the set of all sets with no elements.

References

[Cantor, 1874] Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Crelle's Journal für Mathematik, 77, 258-263.
[Russell, 1902] Russell, B. (1902). Letter to frege. In Jean van Heijenoort (ed.), From Frege to Gödel, Cambridge, Mass.: Harvard University Press, 1967, 124-125.
[Zermelo, 1908] Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre. Mathematische Annalen, 65(2), 261-281. Der Artikel wurde am 30. Juli 1907 in Chesières fertiggestellt.

