
LING4400: Lecture Notes 10
Composition and Schematized Functions

Contents
10.1 Schematized conjunction and disjunction [Partee & Rooth, 1983] 1
10.2 Schematized negation . 5
10.3 Schematized quantifiers . 6

Earlier we drew translation trees that were isomorphic to syntax, which translate directly to logic:

Sentence
(Contain Laos Asia) ∶ t

Verb Phrase
(Contain Laos) ∶ ⟨e, t⟩

Noun Phrase
Laos ∶ e

Laos

Transitive Verb
Contain ∶ ⟨e, ⟨e, t⟩⟩

contains

Noun Phrase
Asia ∶ e

Asia

Today we preserve this isomorphism in conjunction and negation of incomplete propositions.

10.1 Schematized conjunction and disjunction [Partee & Rooth, 1983]
We often encounter conjunctions of incomplete propositions:

(1) a. Etna erupts or is dormant.
b. (entail and entailed by 1a:) Etna erupts or Etna is dormant.

You might think we could just copy the subject into the conjuncts (called conjunction reduction).

But that doesn’t work with quantified subjects:

(2) a. All volcanoes erupt or are dormant.
b. (not entailed by 2a:) All volcanoes erupt or all volcanoes are dormant.

Sentence 2a is true if some volcanoes erupt and the rest are dormant; sentence 2b is not.

To model 2a, we need to get the disjunction inside the nuclear scope of All.

1

This can be done in a derivation tree:

t

⟨e, t⟩

)

)

⟨e, t⟩

t

t

e

x

⟨e, t⟩

Dormant

∨

∨

t

e

x

⟨e, t⟩

Erupt

λx∶e

λx∶e

(

(

⟨⟨e, t⟩, t⟩

⟨e, t⟩

Volcano

⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

but not in a translation tree, since no words in that sentence translate as lambda.

To do this we generalize across these types using schemas, defined with meta-variables γ and δ.

Specifically, we can allow functions to take any type γn with any number n of arguments δ1, ..., δn:

γ0 = t
γn = ⟨δn, γn−1⟩

For example, using the second rule to substitute γ2 and γ1 and then the first rule to substitute γ0:

γ2 = ⟨δ2, γ1⟩ = ⟨δ2, ⟨δ1, γ0⟩⟩ = ⟨e, ⟨e, t⟩⟩ (if δ1 = e and δ2 = e)

(These schematized types are also called polymorphic, because they have several forms.)

We can now define schematized conjunction and disjunction of type ⟨γn, ⟨γn, γn⟩⟩:

~Andγn�
M
= ~λ f ∶γn λg∶γn λxn∶δn . . . λx1∶δ1 f xn . . . x1 ∧ g xn . . . x1�

M

~Orγn�
M
= ~λ f ∶γn λg∶γn λxn∶δn . . . λx1∶δ1 f xn . . . x1 ∨ g xn . . . x1�

M

For example, if n = 1 and γ1 = ⟨e, t⟩, we have a disjunction over an intransitive verb or verb phrase:

~Or⟨e,t⟩�M
= ~λ f ∶⟨e,t⟩ λg∶⟨e,t⟩ λx1∶e f x1 ∨ g x1�

M

2

Here is an example translation, again isomorphic to syntax (read the translation off the top):

((Or⟨e,t⟩ Dormant Erupt) Etna) ∶ t

(Or⟨e,t⟩ Dormant Erupt) ∶ ⟨e, t⟩

(Or⟨e,t⟩ Dormant) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

Dormant ∶ ⟨e, t⟩

is dormant

Or⟨e,t⟩ ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

or

Erupt ∶ ⟨e, t⟩

erupts

Etna ∶ e

Etna

Example translation with variables (requires beta reduction):

((λx∶e Dormant x ∨ Erupt x) Etna)
= (Dormant Etna ∨ Erupt Etna) ∶ t

((λg∶⟨e,t⟩ λx∶e Dormant x ∨ g x) Erupt)
= (λx∶e Dormant x ∨ Erupt x) ∶ ⟨e, t⟩

((λ f ∶⟨e,t⟩ λg∶⟨e,t⟩ λx∶e f x ∨ g x) Dormant)
= (λg∶⟨e,t⟩ λx∶e Dormant x ∨ g x) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

Dormant ∶ ⟨e, t⟩

is dormant

(λ f ∶⟨e,t⟩ λg∶⟨e,t⟩ λx∶e f x ∨ g x) ∶
⟨⟨e, t⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

or

Erupt ∶ ⟨e, t⟩

erupts

Etna ∶ e

Etna

The translation Dormant Etna ∨ Erupt Etna is the same as for Etna erupts or Etna is dormant.

Here’s the analysis for the quantified noun phrase:

(All Volcano (Or⟨e,t⟩ Dormant Erupt)) ∶ t

(Or⟨e,t⟩ Dormant Erupt) ∶ ⟨e, t⟩

(Or⟨e,t⟩ Dormant) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

Dormant ∶ ⟨e, t⟩

are dormant

Or⟨e,t⟩ ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

or

Erupt ∶ ⟨e, t⟩

erupt

(All Volcano) ∶ ⟨⟨e, t⟩, t⟩

Volcano ∶ ⟨e, t⟩

volcanoes

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

3

And here’s the example with variables (requires beta reduction):

(All Volcano (λx∶e Dormant x ∨ Erupt x)) ∶ t

((λg∶⟨e,t⟩ λx∶e Dormant x ∨ g x) Erupt)
= (λx∶e Dormant x ∨ Erupt x) ∶ ⟨e, t⟩

((λ f ∶⟨e,t⟩ λg∶⟨e,t⟩ λx∶e f x ∨ g x) Dormant)
= (λg∶⟨e,t⟩ λx∶e Dormant x ∨ g x) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

Dormant ∶ ⟨e, t⟩

are dormant

(λ f ∶⟨e,t⟩ λg∶⟨e,t⟩ λx∶e f x ∨ g x) ∶
⟨⟨e, t⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

or

Erupt ∶ ⟨e, t⟩

erupt

(All Volcano) ∶ ⟨⟨e, t⟩, t⟩

Volcano ∶ ⟨e, t⟩

volcanoes

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

Note this is not All Volcano Erupt ∨ All Volcano Dormant – the disjunction is for each volcano.

Schematization also works for conjunctions of quantified noun phrases:

(3) a. Most geysers and few volcanoes erupt.
b. (entail and entailed by 3a:) Most geysers erupt and few volcanoes erupt.

Derivation using schematized conjunction (where γη = ⟨⟨e, t⟩, t⟩):

((Andγη (Few Volcano) (Most Geyser)) Erupt) ∶ t

Erupt ∶ ⟨e, t⟩

erupt

(Andγη (Few Volcano) (Most Geyser)) ∶ γη

(Andγη (Few Volcano)) ∶ ⟨γη, γη⟩

(Few Volcano) ∶ γη

Volcano ∶ ⟨e, t⟩

volcanoes

Few ∶ ⟨⟨e, t⟩, γη⟩

few

Andγη ∶ ⟨γη, ⟨γη, γη⟩⟩

and

(Most Geyser) ∶ γη

Geyser ∶ ⟨e, t⟩

geysers

Most ∶ ⟨⟨e, t⟩, γη⟩

Most

Practice 10.1: schematized function

Define a schematized And function for conjoining transitive verbs like peel and eat of type
⟨e, ⟨e, t⟩⟩.

4

10.2 Schematized negation
We also need schemas of type ⟨γn, γn⟩ in order to negate phrases which are not type t:

~Notγn�
M
= ~λ f ∶γn λxn∶δn . . . λx1∶δ1 ¬ (f xn . . . x1)�

M

Here’s an example schema definition:

~Not⟨e,t⟩�M
= ~λ f ∶⟨e,t⟩ λx1∶e ¬ (f x1)�

M

And here’s the full translation, again isomorphic to syntax (read the translation off the top):

(All City (Not⟨e,t⟩ Coastal)) ∶ t

(Not⟨e,t⟩ Coastal) ∶ ⟨e, t⟩

(Not⟨e,t⟩ Coastal) ∶ ⟨e, t⟩

Coastal ∶ ⟨e, t⟩

coastal

Not⟨e,t⟩ ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

not

(λ f ∶⟨e,t⟩ f) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

are

(All City) ∶ ⟨⟨e, t⟩, t⟩

City ∶ ⟨e, t⟩

cities

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

Example translation with variables (requires beta reduction):

(All City (λx∶e ¬ Coastal x)) ∶ t

((λ f ∶⟨e,t⟩ f) (λx∶e ¬ Coastal x))
= (λx∶e ¬ Coastal x) ∶ ⟨e, t⟩

((λ f ∶⟨e,t⟩ λx∶e ¬ f x) Coastal)
= (λx∶e ¬ Coastal x) ∶ ⟨e, t⟩

Coastal ∶ ⟨e, t⟩

coastal

(λ f ∶⟨e,t⟩ λx∶e ¬ f x) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

not

(λ f ∶⟨e,t⟩ f) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

are

(All City) ∶ ⟨⟨e, t⟩, t⟩

City ∶ ⟨e, t⟩

cities

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

Practice 10.2: schematized function

Define a schematized Notγn function that can combine with All.

5

Practice 10.3: tree drawing

Draw a translation tree for Not all countries are coastal using the above function.

10.3 Schematized quantifiers
We have a similar problem with quantifiers as syntactic objects – we can do this in derivations:

t

⟨e, t⟩

t

⟨e, t⟩

t

e

x

⟨e, t⟩

e

y

⟨e, ⟨e, t⟩⟩

Contain

λy∶e

λy∶e

⟨⟨e, t⟩, t⟩

⟨e, t⟩

Thing

⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

λx∶e

λx∶e

⟨⟨e, t⟩, t⟩

⟨e, t⟩

Thing

⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

But we can’t mark up a syntax tree this way and read off the translation – lambdas aren’t words!

To translate by making derivations isomorphic to phrase structure trees, we can’t use abstraction.

Subject/object quantifiers, which take intransitive/transitive arguments, must have different types.

A schematized quantifier of type ⟨⟨e, t⟩, ⟨⟨e, γn⟩, γn⟩⟩, can then be defined for any type γn:

~Allγn�
M
= ~λr∶⟨e,t⟩ λs∶⟨e,γn⟩ λxn∶δn . . . λx1∶δ1 All r (λxn+1∶e s xn+1 . . . x1)�

M

It takes restriction r, nuclear scope s and ‘extra’ arguments x1..n and passes the extras along to s.

For example, if n = 1 and γ1 = ⟨e, t⟩ we have a quantifier over a second argument (direct object):

~All⟨e,t⟩�M
= ~λr∶⟨e,t⟩ λs∶⟨e,⟨e,t⟩⟩ λx1∶e All r (λx2∶e s x2 x1)�

M

Here it is in a translation, which is now isomorphic to syntax (read the translation off the top):

(All Thing (All⟨e,t⟩ Thing Contain)) ∶ t

(All⟨e,t⟩ Thing Contain) ∶ ⟨e, t⟩

(All⟨e,t⟩ Thing) ∶ ⟨⟨e, ⟨e, t⟩⟩, ⟨e, t⟩⟩

everything

Contain ∶ ⟨e, ⟨e, t⟩⟩

contains

(All Thing) ∶ ⟨⟨e, t⟩, t⟩

Everything

6

Practice 10.4: tree drawing

Draw a translation tree for Everyone sent everyone everything, using type ⟨e, ⟨e, ⟨e, t⟩⟩⟩ for sent.

Practice 10.5: translate English to logic

Translate the following into logic by drawing a tree with a logical expression at each branch:

Few people see a volcano.

References
[Partee & Rooth, 1983] Partee, B. & Rooth, M. (1983). Generalized conjunction and type ambi-

guity. In R. Bauerle, C. Schwarze, & A. von Stechow (Eds.), Meaning, Use and Interpretation
of Language (pp. 361–383). Berlin: Walter de Gruyter.

7

	Schematized conjunction and disjunction parteerooth83
	Schematized negation
	Schematized quantifiers

