LING4400: Lecture Notes 10
Composition and Schematized Functions

Contents
[10.1 Schematized conjunction and disjunction [Partee & Rooth, 1983] 1
[10.2 Schematized negation| L
[10.3 Schematized quantifiers| L 6

Earlier we drew translation trees that were isomorphic to syntax, which translate directly to logic:

Sentence
Noun Phrase Verb Phrase
Transitive Verb Noun Phrase
Asia contains Laos

Today we preserve this isomorphism in conjunction and negation of incomplete propositions.

10.1 Schematized conjunction and disjunction [Partee & Rooth, 1983]

We often encounter conjunctions of incomplete propositions:

(1) a.
b. (entail and entailed by [Tj:)

You might think we could just copy the subject into the conjuncts (called conjunction reduction).
But that doesn’t work with quantified subjects:

2) a.
b. (not entailed by [2a:)

Sentence [2 is true if some volcanoes erupt and the rest are dormant; sentence [2p is not.

To model 2, we need to get the disjunction inside the nuclear scope of

This can be done in a derivation tree:

but not in a translation tree, since no words in that sentence translate as lambda.

To do this we generalize across these types using schemas, defined with meta-variables y and 6.

Specifically, we can allow functions to take any type y, with any number n of arguments dy, ..., 0,:
Yo=1
Yn = <5n’ ’)/nfl>

For example, using the second rule to substitute 7> and , and then the first rule to substitute
af and)

(These schematized types are also called polymorphic, because they have several forms.)

We can now define schematized conjunction and disjunction of type (y,, (V.. ¥a)):

[[Andyn]]M = [[/lf:)’n /lg!)/n /lxn:(jn - /lxlzfgl f Xpo o XINZ Xy ... xl]]M
[[Or%]]M = [Agy, Agry, Ay - Axyioy [X X1V & Xy Lx M

For example, if and , we have a disjunction over an intransitive verb or verb phrase:

Here is an example translation, again isomorphic to syntax (read the translation off the top):

((Or(eyy Dormant Erupt) Etna) : t

///\
Etna:e (Or(y Dormant Erupt) : (e, t)
’/\
Erupt : (e,t) (Orey Dormant) : ((e,t), (e, t))
/\
Oriey : ({e.t),({e,t),(e,t))) Dormant: (e,t)
\ e
Etna erupts or is dormant

Example translation with variables (requires beta reduction):

((Aye Dormant x v Erupt x) Etna)
= (Dormant Etna v Erupt Etna) : t

/\
(

(Agi(e) Axe Dormant x v g x) Erupt)

Fnace = (A Dormant x v Erupt x) : (e, t)
] ((/l‘/‘:(e,l) /lg;<c’[) Are f xXVvg x) Dormant)
Erupt: {e.) = (Agfes) Axe Dormant xv g x) - {(e.1). (e.1))
(/If:(e,t> Ag:(e,t) ﬂm\ .
(e (e 1), (e 1)) Dormant : (e, t)
Etna erupts or is dormant

The translation Dormant Etna v Erupt Eina is the same as for Lina erupts or Eina is dormant.

Here’s the analysis for the quantified noun phrase:

(All Volcano (Or e,y Dormant Erupt)) : t
/\

(All Volcano) : ((e, t), t) (Or(csy Dormant Erupt) : (e, t)
/\ /\
All: ((e,t), ((e,t),t)) Volcano: (e,t) Erupt: (e,t) (Orey Dormant) : ((e,t), (e, t))
/\
Oriey : ({e.t), ({e,t),(e,t))) Dormant: (e,t)
| —_—
All volcanoes erupt or are dormant

And here’s the example with variables (requires beta reduction):

(All Volcano (.. Dormant x v Erupt x)) : t

/\

. ((Agi(eyy Axe Dormant x v g x) Erupt)
(All Volcano) : ({e,), t) _ (A, Dormant x v Erupt x) : (e ()

/\ -

All: ((e,t),((e,t),t)) Volcano: (e,t) Erupt: (e,t) ((/1(/1(;;{,1;1 E)e(;rrﬁ;n{;vv;x‘)) 3(ormf?2t))

(/l./'i(C,t) /lg:(c,t) A f xXVeg ,x) :
(e, 1), ({e. 1), (e, 1))

Dormant : (e, t)

N

All volcanoes erupt or are dormant

Note this is not All Volcano Erupt v All Volcano Dormant — the disjunction is for each volcano.

Schematization also works for conjunctions of quantified noun phrases:

(3) a. Most geysers and few volcanoes erupt.
b. (entail and entailed by [Bp:) Most geysers erupt and few volcanoes erupt.

Derivation using schematized conjunction (where , = ((e.().1)):

((And,, (Few Volcano) (Most Geyser)) Erupt) : t
’/\

(And,, (Few Volcano) (Most Geyser)) : y, Erupt : (e, t)
(Most Gemmano)) (Vs Vi)
Most : ((Wr: (e,t) And, : (ymcano) SV
Few : ((Wo : (e, t)
I |

Most geysers and few volcanoes erupt

Practice 10.1: schematized function

Define a schematized And function for conjoining transitive verbs like pee/ and car of type

(e, (e, 1)).

10.2 Schematized negation

We also need schemas of type (y,,y,) in order to negate phrases which are not type t:
[Not, 1" = [y, Avs, --- Axys, = (f Xnooox) IV
Here’s an example schema definition:
INOtey 1™ = [fgery Axe = (f 20) 1

And here’s the full translation, again isomorphic to syntax (read the translation off the top):

(All City (Not Coastal)) : t
/\

(All City) : ((e, t),) (Noty Coastal) : (e, t)
All: ((e,t), ((e,t),t)) City:(e,t) (Apen f):{(e,t), (e, t)) (Not. Coastal) : (e,t)
/\\\

Not. : ((e,t),(e,t)) Coastal: (e,t)

| \
All cities are not coastal

Example translation with variables (requires beta reduction):

(All City (A, — Coastal x)) : t

/ ((Apeny f) (Are — Coastal x))

(All City) : {{e,), 1) = (A4 - Coastal x) : (e, 1)

/ \ ///////((/\

Al ((e.0) ((e.0.0) City: (@) (e 1)+ ((e.0). (er1) W o

(/l_/':(c.t> Axe = f ‘) : Coastal : <C, t>

({e,1), (e, 1))

All cities are not coastal

Practice 10.2: schematized function

Define a schematized Not, function that can combine with All.

Practice 10.3: tree drawing

Draw a translation tree for using the above function.

10.3 Schematized quantifiers

We have a similar problem with quantifiers as syntactic objects — we can do this in derivations:

But we can’t mark up a syntax tree this way and read off the translation — lambdas aren’t words!
To translate by making derivations isomorphic to phrase structure trees, we can’t use abstraction.

Subject/object quantifiers, which take intransitive/transitive arguments, must have different types.

A schematized quantifier of type ((e, t), ({€,¥.),¥x:)), can then be defined for any type 7y,:
[[A“y,,]]M = [[/lr:(e,t) /ls:(e,yn) /lxn:(s,, oo /lxlz()‘] All (/lan:e S Xptl - xl)]]M

It takes restriction r, nuclear scope s and ‘extra’ arguments x; , and passes the extras along to s.

For example, if and we have a quantifier over a second argument (direct object):

Here it is in a translation, which is now isomorphic to syntax (read the translation off the top):

Practice 10.4: tree drawing

Draw a translation tree for using type for

Practice 10.5: translate English to logic

Translate the following into logic by drawing a tree with a logical expression at each branch:

References

[Partee & Rooth, 1983] Partee, B. & Rooth, M. (1983). Generalized conjunction and type ambi-
guity. In R. Bauerle, C. Schwarze, & A. von Stechow (Eds.), Meaning, Use and Interpretation
of Language (pp. 361-383). Berlin: Walter de Gruyter.

	Schematized conjunction and disjunction parteerooth83
	Schematized negation
	Schematized quantifiers

