LING4400: Lecture Notes 12 Eventualities

Contents

12.1 Eventualities [Davidson, 1967, Bach, 1986] 1
12.2 Further decomposition (lexical semantics) 3
12.3 Quantified sentences as arguments 4
12.4 Tense 4
12.5 Non-intersective modifiers 5

12.1 Eventualities [Davidson, 1967, Bach, 1986]

We have reasons to treat eventualities (events and states) like entities.

1. First, we constrain them with modifiers like we constrain descriptions of entities:
(1) a. Etna erupted in 2021.
b. (entailed by 1a:) Etna erupted.
2. Second, we describe them explicitly like entities in nominalizations:
(2) a. Etna erupted in 2021.
b. (entails and entailed by 2a:) An eruption of Etna was in 2021.

This similarity is modeled by adding an argument to verbs and other predicates - type $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$:

$$
\llbracket \text { Erupt } \rrbracket^{M}=\llbracket \lambda_{x: \mathrm{e}} \lambda_{e: \mathrm{e}} \text { Erupt } x e \rrbracket^{M}
$$

Modifiers of these events can be composed using the schematized modifier rules:
($\lambda_{e: \mathrm{e}}$ Erupt Etna $\left.e \wedge \operatorname{In} 2021 e\right):\langle\mathrm{e}, \mathrm{t}\rangle$

Practice 12.1: trees with rules

Label the tree for Etna erupted in 2021 with rules.

Note that the variable e above is not quantified.
We can quantify it with an adverb Once, translated as Some. For example:
(Some $\left(\lambda_{e: e}\right.$ Erupt Etna $\left.\left.e \wedge \ln 2021 e\right)\right):\langle\langle e, t\rangle, t\rangle$

This extends naturally to other cardinal quantifiers: twice as Two, never as None, etc.
If we don't have an explicit quantifier, we can assume an implicit one:

$$
f:\langle\mathrm{e}, \mathrm{t}\rangle \Rightarrow(\text { Some } f):\left\langle\left\langle\mathrm{e}, \gamma_{n}\right\rangle, \gamma_{n}\right\rangle \quad \text { (Existential Closure) }
$$

This is sometimes called existential closure.

For isolated sentences we need an additional closure operation to get a truth value:

$$
g:\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle \Rightarrow\left(g\left(\lambda_{e: \mathrm{e}} \text { True }\right)\right): \mathrm{t} \quad \text { (Nuclear Scope Closure) }
$$

For example:

$$
\begin{aligned}
& \text { (Some (} \left.\lambda_{e: \mathrm{e}} \text { Erupt Etna } e \wedge \ln 2021 e\right)\left(\lambda_{e: \mathrm{e}} \text { True }\right) \text {) : t } \\
& \text { (Some }\left(\lambda_{e: e} \text { Erupt Etna } e \wedge \operatorname{In} 2021 e\right) \text {) : }\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle \\
& \left(\lambda_{e: \mathrm{e}} \text { Erupt Etna } e \wedge \operatorname{In} 2021 e\right):\langle\mathrm{e}, \mathrm{t}\rangle \\
& \text { Etna: e } \quad\left(\lambda_{x: \mathrm{e}} \lambda_{e: \mathrm{e}} \text { Erupt } x e \wedge \ln 2021 e\right):\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle \\
& \begin{array}{|ccc}
& \text { Erupt }: \widehat{\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle} & (\ln 2021)
\end{array}:\langle\mathrm{e}, \mathrm{t}\rangle
\end{aligned}
$$

This analysis treats quantified sentences like quantified noun phrases, for use as arguments.

Practice 12.2: trees with rules

Label the complete tree for Etna erupted in 2021 with rules.

12.2 Further decomposition (lexical semantics)

Many transitive predicates can be further decomposed into a cause and an intransitive predicate:
(3) a. The Constitution sank the Guerriere.
b. (entailed by 3a:) The Guerriere sank.

Here's the translation:
$\left(\right.$ Some $\left(\lambda_{e: \mathrm{e}}\right.$ Cause e Constitution \wedge Sink Guerriere $\left.e\right)\left(\lambda_{e: \mathrm{e}}\right.$ True $\left.)\right): \mathrm{t}$
(Some $\left(\lambda_{e: \mathrm{e}}\right.$ Cause e Constitution $\wedge \operatorname{Sink}$ Guerriere $\left.e\right)$) : $\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
$\left(\lambda_{e: \mathrm{e}}\right.$ Cause e Constitution $\wedge \operatorname{Sink}$ Guerriere $\left.e\right):\langle e, \mathrm{t}\rangle$

The intransitive predicate can then occur by itself as an unaccusative verb:

The transitive and intransitive need not be the same verb:

$$
\begin{aligned}
& \text { kill } \Rightarrow\left(\lambda_{y: \mathrm{e}} \lambda_{\text {x:e }} \lambda_{e: \mathrm{e}} \text { Cause } e x \wedge \text { Die } y e\right):\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle \\
& \text { give } \Rightarrow\left(\lambda_{\text {z:e }} \lambda_{y: \mathrm{e}} \lambda_{x: \mathrm{e}} \lambda_{e: \mathrm{e}} \text { Cause } e x \wedge \text { Have } z y e\right):\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle\rangle
\end{aligned}
$$

12.3 Quantified sentences as arguments

This treatment provides a simple analysis for sentential arguments analogous to noun phrases:

```
(Some ( \(\lambda_{e: \mathrm{e}}\) Erupt Etna \(e \wedge\left(\right.\) Some \(_{\langle\mathrm{e}, \mathrm{t}\rangle}\) (Erupt Wolf) After) \(\left.e\right)\left(\lambda_{e: \mathrm{e}}\right.\) True \()\) ) : t
(Some \(\left(\lambda_{e: e}\right.\) Erupt Etna \(e \wedge\left(\right.\) Some \(_{\langle e, t\rangle}\) (Erupt Wolf) After) \(\left.\left.e\right)\right):\langle\langle e, t\rangle, t\rangle\)
    \(\left(\lambda_{e: \mathrm{e}}\right.\) Erupt Etna \(e \wedge\left(\right.\) Some \(_{\langle\mathrm{e}, \mathrm{t}\rangle}\) (Erupt Wolf) After) \(\left.e\right):\langle\mathrm{e}, \mathrm{t}\rangle\)
    (Erupt Etna) : \(\langle\mathrm{e}, \mathrm{t}\rangle \quad\left(\right.\) Some \(_{\langle\mathrm{e}, \mathrm{t}\rangle}(\) Erupt Wolf) After) : \(\langle\mathrm{e}, \mathrm{t}\rangle\)
```


Practice 12.3: trees with rules

Label the tree for Etna erupted after Wolf erupted with rules.

12.4 Tense

We can use eventualities to carry tense, assuming an entity Now for the beginning of the speech. For example, here's a present tense function (schematized for use with an intransitive verb):

$$
\llbracket \text { Present }_{\langle e, t\rangle} \rrbracket^{M}=\llbracket \lambda_{f:\langle e,\langle e, t\rangle\rangle} \lambda_{x: \mathrm{e}} \lambda_{e: \mathrm{e}} f x e \wedge \ln e \mathrm{Now} \rrbracket^{M}
$$

And here's one for past tense, assuming Precede with its usual meaning:

$$
\llbracket \text { Past }_{\langle e, t\rangle} \rrbracket^{M}=\llbracket \lambda_{f:\langle e,\langle e, t\rangle\rangle} \lambda_{x: \mathrm{e}} \lambda_{e: \mathrm{e}} f x e \wedge \text { Some }(\operatorname{In} e) \text { (Precede Now) } \rrbracket^{M}
$$

So here's what the translation looks like:

12.5 Non-intersective modifiers

Remember our trouble with new capital:
(4) a. Beijing is a new capital.
b. (entailed by 4 :) Beijing is a capital.
c. (not entailed by 4 : : Beijing is new.
as opposed to coastal capital:
(5) a. Beijing is a coastal capital.
b. (entailed by 5 a:) Beijing is a capital.
c. (entailed by 5a:) Beijing is coastal.

Here's an analysis using eventualities:


```
new capital
```

In English, adjectives like old are polysemous between intersective and non-intersective:
(6) a. Kim is an old friend of mine.
b. (entailed by 6a:) Kim is old.
c. (entailed by 6:) My friendship with Kim is old.

These meanings are distinguished using pre- or post-modifiers in Spanish and Portuguese:
(7) a. Kim é um velho amigo.
b. (entailed by 7af) Kim is old.
c. Kim é um amigo velho.
d. (entailed by 7c.) My friendship with Kim is old.

References

[Bach, 1986] Bach, E. (1986). The algebra of events. Linguistics and Philosophy, 9(1), 5-16.
[Davidson, 1967] Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The logic of decision and action (pp. 81-94). Pittsburgh: University of Pittsburgh Press.

