LING4400: Problem Set 1

Due via Carmen dropbox at 11:59 PM 9/12.

1. [9 pts.] List all the unique possible functions (that is, tables) of type $\langle e, t\rangle$ in a world with two e's: (Laos, Togo), and three t's (False, True, Maybe). Hint: there are 9.
2. [3 pts.] How many unique possible functions (that is, tables) of type $\langle e,\langle e, t\rangle\rangle$ are there in a world with three e's: (A, B , C), and two t's (False, True)? In a sentence, explain why.
3. Assuming variables x and y and constant A are of type e, constants P and Q are of type $\langle e, t\rangle$ and constant R is of type $\langle e,\langle e, t\rangle\rangle$, draw derivation trees that identify the type of each of the following:
(a) $[2$ pts. $] \lambda_{x: e} x$
(b) $[2$ pts. $] \lambda_{x: e} \mathrm{P} x$
(c) $[2$ pts.] $P x$
(d) $[2$ pts.] R x
(e) $\left[2\right.$ pts.] $\left(\lambda_{x: e} \mathrm{P} x\right) y$
(f) [2 pts.] R A A
(g) $[2$ pts. $] \lambda_{x: e} R \times \mathrm{A}$
(h) [2 pts.] $\lambda_{y: \mathrm{e}} \lambda_{x: \mathrm{e}} \mathrm{R} y x$
(i) $\left[2\right.$ pts.] $\lambda_{x: \mathrm{e}}$ And $(\mathrm{P} x)(\mathrm{Q} x)$
4. [3 pts.] Beta reduce the following expression:
$\left(\lambda_{x: \mathrm{e}} \lambda_{y \mathrm{e}}\right.$ And (Coastal $\left.y\right)($ Capital $x)$) Laos
5. [3 pts.] What is the interpretation of the following expression in a world model M with truth value tables for the function constants as shown in the lecture notes on propositional logic:

$$
\llbracket \text { And (If True False) True } \rrbracket^{M}
$$

6. [3 pts . extra credit] Write a lambda calculus expression for a function using conjunction (And) and negation (Not) as defined in the lecture notes on propositional logic that takes three truth values as input and outputs True if the output of a conjunction of the first two is equal to the third, and False otherwise.
