LING4400: Problem Set 2

Due via Carmen dropbox at 11:59 PM 9/26.

1. Using the predicates and operators defined in the lecture notes, draw derivation trees that identify the type of each of the following:
(a) $[2$ pts. $] 2+3=5$
(b) $[2$ pts. $] \lambda_{y: e} y=2+3$
(c) $[2$ pts. $]\left|\lambda_{y: e} y=2\right|$
(d) $\left[2 \mathrm{pts}\right.$.] $\lambda_{s:\langle e, t\rangle}|s|$
(e) [2 pts.] $\lambda_{s:\{e, t\rangle} \lambda_{x: e} s x$
(f) [2 pts.] $\lambda_{s:\langle e, t\rangle}\left|\lambda_{x: e} s x\right|$
2. (a) [3 pts.] Write a generalized quantifier expression using the propositional and generalized quantifier functions defined in the lecture notes, as well as predicates Volcano, Coastal and Country of type $\langle e, t\rangle$ and Contain of type $\langle e,\langle e, t\rangle\rangle$, with the same meanings as the sentence Every country containing no volcano is coastal. (Note that this sentence is different from the one shown in lecture notes 5 section 3!) It may help to draw the derivation tree first (which is the next problem).
(b) [3 pts.] Draw a derivation tree, with branches corresponding to the notation rules defined in the lecture notes, for the expression you wrote in the previous problem.
3. Given the following world model:

D_{e}^{M}	$=$ Laos, Mali, Peru,
\llbracket Coastal $\rrbracket^{M}=$	input \quad output Laos : False Mali : False Peru: True Pune : True Togo : True
\llbracket Country $\rrbracket^{M}=$	input output Laos: True Mali : True Peru: True Pune : False Togo : True

(a) $[3 \mathrm{pts}$.$] what is the denotation of the following expression:$

$$
\llbracket \lambda_{x: \mathrm{e}}(\neg(\text { Coastal } x)) \wedge \text { Country } x \rrbracket^{M}=\text { ? }
$$

(b) [1 pts.] what is the denotation of the following expression:

$$
\llbracket \mid \lambda_{x: \mathrm{e}}(\neg(\text { Coastal } x)) \wedge \text { Country } x \mid \rrbracket^{M}=?
$$

4. [3 pts.] Draw a world model with no more than six objects that satisfies the following equation:

$$
\llbracket \text { ExactlyTwo }\left(\lambda_{x: \mathrm{e}} \operatorname{Bag} x\right)\left(\lambda_{x: \mathrm{e}} \text { Half }\left(\lambda_{y: \mathrm{e}} \text { Blocks } y\right)\left(\lambda_{y: \mathrm{e}} \text { Contain } y x\right)\right) \rrbracket^{M}=\text { True }
$$

You may draw bags as circles and blocks as squares.
5. What is the type of each of the following expressions, assuming predicates Square and Circle of type $\langle e, t\rangle$ (it may help to draw derivation trees with branches corresponding to the notation rules defined in the lecture notes):
(a) $\left[3\right.$ pts.] $\left(\lambda_{s:\langle e, t\rangle} \operatorname{Most}\left(\lambda_{x ; \mathrm{e}}\right.\right.$ Square $\left.\left.x\right) s\right)$
(b) $\left[3 \mathrm{pts}\right.$.] $\left(\lambda_{s:\langle e, t\rangle} \operatorname{Most}\left(\lambda_{x: \mathrm{e}}\right.\right.$ Square $\left.\left.x\right) s\right)$ Circle
(c) $\left[3\right.$ pts.] Most $\left(\lambda_{x: \mathrm{e}}\right.$ Square $\left.x\right)$
6. [extra credit, replacing question 3 of Problem Set 1] Using the predicates and operators defined in the lecture notes, and assuming variables x and y and constant A are of type e, constant P is of type $\langle e, t\rangle$ and constant R is of type $\langle e,\langle e, t\rangle\rangle$, draw derivation trees that identify the type of each of the following:
(a) $[2 \mathrm{pts}.] \lambda_{p: t} \operatorname{Not} p$
(b) $[2$ pts. $] \mathrm{R} \mathrm{A}$
(c) $[2$ pts. $] \mathrm{R} x y$
(d) $\left[2\right.$ pts.] $\lambda_{x: \mathrm{e}} \operatorname{Not}(\mathrm{P} x)$
(e) $[2 \mathrm{pts}.] \lambda_{p: t} \lambda_{q: t}$ And $(\operatorname{Not} p) q$
(f) [2 pts.] $\lambda_{y: e}\left(\lambda_{x: \mathrm{e}} \mathrm{P} x\right) y$
(g) [2 pts.] If $(P x)$ True
(h) [2 pts.] $\lambda_{y: \mathrm{e}} \lambda_{x: \mathrm{e}} \mathrm{R} y$

