LING4400: Problem Set 3

Due via Carmen dropbox at 11:59 PM 10/10.

1. For the following first-order logic expression:

$$
\forall_{x: \mathrm{e}} \text { Volcano } x \wedge \exists_{y: \mathrm{e}}(\text { Country } y \wedge \operatorname{In} y x) \rightarrow \text { Erupt } x
$$

(a) [3 pts.] draw a derivation tree for the above expression that identifies its type,
(b) [3 pts.] translate the above expression into an equivalent expression using generalized quantifiers instead of first-order quantifiers, and
(c) [3 pts.] draw a derivation tree for your translated expression that identifies its type.
2. For the following lambda calculus expression:

$$
\text { Some }\left(\lambda_{x: \mathrm{e}} \text { Person } x\right)\left(\lambda_{x: \mathrm{e}} \operatorname{All}\left(\lambda_{y: \mathrm{e}} \text { Booth } y\right)\left(\lambda_{y: \mathrm{e}} \operatorname{Not}(\operatorname{In} y x)\right)\right)
$$

(a) $[3$ pts.] draw a derivation tree for the above expression that identifies its type,
(b) [3 pts.] translate the above expression into an equivalent expression using first-order logic instead of lambda calculus, and
(c) [3 pts.] draw a derivation tree for your translated expression that identifies its type.
3. Using the set notation defined in the lecture notes, draw derivation trees that identify the type of each of the following:
(a) $[2 \mathrm{pts}].\{$ True $\}$
(b) $[2$ pts.] $\{\{$ True $\}\}$
(c) $[2$ pts. $\{s:\langle\mathrm{e}, \mathrm{t}\rangle \mid s=\varnothing\}$
(d) $[2$ pts.] $\{x: \mathrm{e} \mid x \in\{$ Mali, Togo $\}\}$
(e) $[2$ pts.] $\{$ True $\} \subseteq\{$ True $\} \cup\{$ False $\}$
4. Label the following as true or false:
(a) $[2$ pts. $]\{$ Laos $\} \notin\{$ Mali, Togo $\}$
(b) $[2$ pts.] $\{$ Laos $\} \supseteq\{$ Mali, Togo $\}$
(c) [2 pts.] Mali $\in\{$ Laos $\} \cap\{$ Mali $\}$
(d) [2 pts.] Mali $\in\{$ Laos $\} \cup\{$ Mali $\}$
5. (a) [3 pts.] Translate the following expression in set notation into lambda calculus:
\{ \{True\}\}
(b) [3 pts.] Draw a derivation tree for your translated expression that identifies its type.
6. To which classes (relating to reflexivity, symmetry, and transitivity) do the following relations belong? (Note that there will be more than one for each.)
(a) [3 pts.] is a direct supervisor of
(b) [3 pts.] is a co-worker of
(c) $[3$ pts.] outranks

