LING4400: Study Guide 1

Practice 2.1:

How many functions of type $\langle e, t \rangle$ are there in a world with two e's: (**A**, **B**), and two t's?

 $2^2 = 4$

Practice 2.2:

List all the possible functions of type (e, t) in a world with two e's: (A, B), and two t's.

input		output
Α	:	False
В	:	False
•		4
input		output
Α	:	False
В	:	True
input		output
Α	:	True
В	:	False
innut		output
input		output
A	:	True

Practice 2.3:

Write a lambda calculus function that multiplies a number by two and then adds one. You can use the symbols ' \times ' and '+' inside your function.

 $\lambda_{x:e} (2 \times x) + 1$

Practice 2.4:

Write a lambda calculus expression that applies your function above to the number 3. You don't have to show the result.

 $(\lambda_{x:e} (2 \times x) + 1) 3$

Practice 2.5:

Beta reduce the following expression:

 $(\lambda_{xe} (And (Coastal x) (Capital x)))$ Laos

(And (Coastal Laos) (Capital Laos)))

Practice 2.6:

Beta reduce the following expression:

 $(\lambda_{y:e} \lambda_{x:e}$ Contain y x) Laos Asia

Contain Laos Asia

Practice 3.1:

What is the interpretation of the expression And True?

input output False : False True : True

Practice 3.2:

Draw a derivation tree showing types for the expression $\lambda_{p:t} \lambda_{q:t}$ Not (And p q).

Practice 3.3:

Write an expression to produce the following truth table using conjunction and negation:

input	output		
False :	input output		
	False : False		
	True : True		
True :	input output		
	False : False		
	True : False		

 $\lambda_{p:t} \lambda_{q:t}$ (And (Not p) q)

Practice 5.1: cardinality of functions

Given the same denotations for Coastal and Country, what is the denotation of the following expression:

```
\llbracket \mid \lambda_x \text{ Coastal } x \lor \text{ Country } x \mid \rrbracket^M
```

4

Practice 5.2: meaning

Given a world *M* of Shape entities (where Purple and Square have their usual meanings):

what is the denotation of the following lambda calculus expression?

```
\llbracket Most (\lambda_x \text{ Shape } x \land Purple x) (\lambda_x \text{ Square } x) \rrbracket^M
```

true

Practice 5.3: another meaning

Given the same world of shapes above, what is the denotation of the following lambda calculus expression?

 $\llbracket Most (\lambda_{x:e} Shape x) (\lambda_{x:e} Square x \land Purple x) \rrbracket^{M}$

false

Practice 5.4: tree drawing

Draw a derivation tree for the following expression:

```
Most (\lambda_{x:e} Shape x) (\lambda_{x:e} Square x \land Purple x)
```


Practice 5.5:

Classify the following as cardinal or proportional:

- 1. one third
- 2. seven
- 1. Proportional
- 2. Cardinal

Practice 8.1:

Assume a world model with two entities: (A, B), and two truth values.

Draw the truth table for the universal quantifier.

	input	output
	input output	
[[Universal]] ^M =	A : False	: False
	B : False	
	input output	
	A : False	: False
	B : True	
	input output	
	A : True	: False
	B : False	
	input output	
	A : True	: True
	B : True	

Practice 8.2:

Translate this expression from first-order logic into English: $\forall_{x:e} \text{ City } x \rightarrow \text{ Capital } x$.

For every thing, if it is a city then it is a capital.

or

Every city is a capital.

Practice 8.3:

Write a logic expression using the propositional and first-order functions defined in the lecture notes, as well as constant Italy of type e and predicates Volcano of type $\langle e, t \rangle$ and Contain of type $\langle e, \langle e, t \rangle$ stating that *Italy contains a volcano*.

 $\exists_{x:e}$ Volcano $x \land$ Contain x Italy

Practice 8.4: tree drawing

Draw a derivation tree for the following expression:

 $\forall_{x:e} \text{ City } x \rightarrow \text{ Capital } x$

Practice 8.5: translating first-order quantifiers into generalized quantifiers

Translate the below first-order quantified expression:

```
\forall_{y:e} \text{ Booth } y \rightarrow \exists_{x:e} \text{ Person } x \land \ln y x
```

into an expression using only generalized quantifiers Some and All, and predicates Booth, Person and In.

All $(\lambda_{y:e} \text{ Booth } y)$ (Some $(\lambda_{x:e} \text{ Person } x)$ (In y x))

Practice 8.6:

Which of the above classes do the following relations belong to?

- 1. intersects
- 2. is next to
- 3. *is larger than*
- 1. reflexive, symmetric, nontransitive
- 2. irreflexive, symmetric, nontransitive
- 3. irreflexive, asymmetric, transitive

Practice 9.1:

Which of the following are true:

- 1. {Mali, Togo} \subseteq {Mali, Togo}
- 2. {Mali, Togo} \notin {Mali, Togo}
- 3. $\emptyset \in \{\text{Mali}, \text{Togo}\}$

```
4. \emptyset \subset \{Mali, Togo\}
```

- 1. true
- 2. true
- 3. false
- 4. true

Practice 9.2:

Write an expression in *set notation* meaning *the set of all sets with no elements*.

 ${ s | |s| = 0 }$ or ${ s | s = \emptyset }$ or ${\emptyset}$

Practice 9.3:

Write an expression in *lambda calculus* meaning the set of all sets with no elements.

 $\lambda_{s:\langle e,t\rangle} s = (\lambda_{x:e} \text{ False})$