LING4400: Study Guide 1

Practice 2.1:

How many functions of type $\langle e, t\rangle$ are there in a world with two e's: (A,B), and two t's?
$2^{2}=4$

Practice 2.2:

List all the possible functions of type $\langle e, t\rangle$ in a world with two e's: (A,B), and two t's.

input	output	
A	$:$	False
B	:	False

input	output	
A	:	False
B	:	True

input	output	
A	$:$	True
B	:	False

input	output	
A	:	True
B	:	True

Practice 2.3:

Write a lambda calculus function that multiplies a number by two and then adds one. You can use the symbols ' \times ' and '+' inside your function.
$\lambda_{x: e}(2 \times x)+1$

Practice 2.4:

Write a lambda calculus expression that applies your function above to the number 3. You don't have to show the result.
$\left(\lambda_{x: \mathrm{e}}(2 \times x)+1\right) 3$

Practice 2.5:

Beta reduce the following expression:
$\left(\lambda_{x: \mathrm{e}}(\right.$ And $($ Coastal $x)($ Capital $x))$ Laos
(And (Coastal Laos) (Capital Laos)))

Practice 2.6:

Beta reduce the following expression:
($\lambda_{y \text { :e }} \lambda_{x: \mathrm{e}}$ Contain $y x$) Laos Asia

Contain Laos Asia

Practice 3.1:

What is the interpretation of the expression And True?

input output
False: False
True: True

Practice 3.2:

Draw a derivation tree showing types for the expression $\lambda_{p: t} \lambda_{q: t} \operatorname{Not}($ And $p q)$.

Practice 3.3:

Write an expression to produce the following truth table using conjunction and negation:

input	output
False :	input output
	False : False
	True : True
True :	input output
	False : False
	True : False

$\lambda_{p: \mathrm{t}} \lambda_{q: \mathrm{t}}(\operatorname{And}(\operatorname{Not} p) q)$

Practice 5.1: cardinality of functions

Given the same denotations for Coastal and Country, what is the denotation of the following expression:

$$
\llbracket \mid \lambda_{x} \text { Coastal } x \vee \text { Country } x \mid \rrbracket^{M}
$$

4

Practice 5.2: meaning

Given a world M of Shape entities (where Purple and Square have their usual meanings):

what is the denotation of the following lambda calculus expression?

$$
\llbracket \text { Most }\left(\lambda_{x} \text { Shape } x \wedge \text { Purple } x\right)\left(\lambda_{x} \text { Square } x\right) \rrbracket^{M}
$$

true

Practice 5.3: another meaning

Given the same world of shapes above, what is the denotation of the following lambda calculus expression?

$$
\llbracket \operatorname{Most}\left(\lambda_{x: \mathrm{e}} \text { Shape } x\right)\left(\lambda_{x: \mathrm{e}} \text { Square } x \wedge \text { Purple } x\right) \rrbracket^{M}
$$

false

Practice 5.4: tree drawing

Draw a derivation tree for the following expression:

$$
\text { Most }\left(\lambda_{x: \mathrm{e}} \text { Shape } x\right)\left(\lambda_{x: \mathrm{e}} \text { Square } x \wedge \text { Purple } x\right)
$$

Practice 5.5:

Classify the following as cardinal or proportional:

1. one third
2. seven

1. Proportional

2. Cardinal

Practice 8.1:

Assume a world model with two entities: (\mathbf{A}, \mathbf{B}), and two truth values.
Draw the truth table for the universal quantifier.

【Universal $\rrbracket^{M}=$	input	output
	input output	
	A : False B False	: False
	input output	
	$\begin{aligned} & \text { A }: \text { False } \\ & \text { B }: \text { True } \end{aligned}$: False
	input output	
	$\begin{aligned} & \text { A : True } \\ & \text { B } \end{aligned} \text { : False }$: False
	input output	
	A : True B : True	: True

Practice 8.2:

Translate this expression from first-order logic into English: $\forall_{x: \mathrm{e}}$ City $x \rightarrow$ Capital x.

For every thing, if it is a city then it is a capital.
or
Every city is a capital.

Practice 8.3:

Write a logic expression using the propositional and first-order functions defined in the lecture notes, as well as constant Italy of type e and predicates Volcano of type $\langle e, t\rangle$ and Contain of type $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$ stating that Italy contains a volcano.
$\exists_{x: \mathrm{e}}$ Volcano $x \wedge$ Contain x Italy

Practice 8.4: tree drawing

Draw a derivation tree for the following expression:

$$
\forall_{x: \mathrm{e}} \text { City } x \rightarrow \text { Capital } x
$$

Practice 8.5: translating first-order quantifiers into generalized quantifiers

Translate the below first-order quantified expression:

$$
\forall_{y: \mathrm{e}} \text { Booth } y \rightarrow \exists_{x: \mathrm{e}} \text { Person } x \wedge \operatorname{In} y x
$$

into an expression using only generalized quantifiers Some and All, and predicates Booth, Person and \ln.

$$
\text { All }\left(\lambda_{y: \mathrm{e}} \text { Booth } y\right)\left(\text { Some }\left(\lambda_{x: \mathrm{e}} \text { Person } x\right)(\ln y x)\right)
$$

Practice 8.6:

Which of the above classes do the following relations belong to?

1. intersects
2. is next to
3. is larger than
4. reflexive, symmetric, nontransitive
5. irreflexive, symmetric, nontransitive
6. irreflexive, asymmetric, transitive

Practice 9.1:

Which of the following are true:

1. $\{$ Mali, Togo $\} \subseteq\{$ Mali, Togo $\}$
2. $\{$ Mali, Togo $\} \not \subset\{$ Mali, Togo $\}$
3. $\varnothing \in\{$ Mali, Togo $\}$
4. $\varnothing \subset\{$ Mali, Togo $\}$
5. true
6. true
7. false
8. true

Practice 9.2:

Write an expression in set notation meaning the set of all sets with no elements.
$\{s||s|=0\}$
or
$\{s \mid s=\varnothing\}$
or
$\{\varnothing\}$

Practice 9.3:

Write an expression in lambda calculus meaning the set of all sets with no elements.
$\lambda_{s:\langle\mathrm{e}, \mathrm{t}\rangle} s=\left(\lambda_{x: \mathrm{e}}\right.$ False $)$

