
LING4400: Study Guide 2
Practice 10.1: schematized function

Define a schematized And function for conjoining transitive verbs like peel and eat of type
⟨e, ⟨e, t⟩⟩.

~And⟨e,⟨e,t⟩⟩�M = ~λ f ∶⟨e,⟨e,t⟩⟩ λg∶⟨e,⟨e,t⟩⟩ λx2∶e λx1∶e f x2 x1 ∨ g x2 x1�
M

Practice 10.2: schematized function

Define a schematized Notγn function that can combine with All.

~Not⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩�M = ~λ f ∶⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ λx2∶⟨e,t⟩ λx1∶⟨e,t⟩ ¬ f x2 x1�
M

Practice 10.3: tree drawing

Draw a translation tree for Not all countries are coastal, using the above function.

(Not⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ All Country Coastal) ∶ t

Coastal ∶ ⟨e, t⟩

Coastal ∶ ⟨e, t⟩

coastal

Identity ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

are

(Not⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ All Country) ∶ ⟨⟨e, t⟩, t⟩

Country ∶ ⟨e, t⟩

countries

(Not⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ All) ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

all

Notγn ∶ ⟨γn, γn⟩

Not

Practice 10.4: tree drawing

Draw a translation tree for Everyone sent everyone everything, using type ⟨e, ⟨e, ⟨e, t⟩⟩⟩ for sent.

1



(Everyt Person (Every
⟨e,t⟩ Thing (Every

⟨e,⟨e,t⟩⟩ Person Send))) ∶ t

(Every
⟨e,t⟩ Thing (Every

⟨e,⟨e,t⟩⟩ Person Send)) ∶ ⟨e, t⟩

(Everyγn
Thing) ∶ ⟨⟨e, γn⟩, γn⟩

everything

(Every
⟨e,⟨e,t⟩⟩ Person Send) ∶ ⟨e, ⟨e, t⟩⟩

(Everyγn
Person) ∶ ⟨⟨e, γn⟩, γn⟩

everyone

Send ∶ ⟨e, ⟨e, ⟨e, t⟩⟩⟩

sent

(Everyγn
Person) ∶ ⟨⟨e, γn⟩, γn⟩

Everyone

Practice 10.5: translate English to logic

Translate the following into logic by drawing a tree with a logical expression at each branch:

Few people see a volcano.

(Few People (Some⟨e,t⟩ Volcano See)) ∶ t

(Some⟨e,t⟩ Volcano See) ∶ ⟨e, t⟩

(Some⟨e,t⟩ Volcano) ∶ ⟨⟨e, ⟨e, t⟩⟩, ⟨e, t⟩⟩

Volcano ∶ ⟨e, t⟩

volcano

Some⟨e,t⟩ ∶ ⟨⟨e, t⟩, ⟨⟨e, ⟨e, t⟩⟩, ⟨e, t⟩⟩⟩

a

See ∶ ⟨e, ⟨e, t⟩⟩

see

(Few People) ∶ ⟨⟨e, t⟩, t⟩

People ∶ ⟨⟨e, t⟩, t⟩

people

Few ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

Few

Practice 11.1: trees with rules

Label each branch in the translation tree for the sentence Pune is a coastal city with a rule name
(forward function application, backward function application, forward modification, backward
modification).

2



((λx∶e Coastal x ∧City x) Pune)
= Coastal Pune ∧City Pune ∶ t

(λx∶e Coastal x ∧City x) ∶ ⟨e, t⟩

(λx∶e Coastal x ∧City x) ∶ ⟨e, t⟩

(λx∶e Coastal x ∧City x) ∶ ⟨e, t⟩

City ∶ ⟨e, t⟩

city

Coastal ∶ ⟨e, t⟩

coastal

Forward Modification

(λ f ∶⟨e,t⟩ f ) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

a

Forward Function Application

(λ f ∶⟨e,t⟩ f ) ∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

is

Forward Function Application

Pune ∶ e

Pune

Backward Function Application

Practice 11.2: trees with rules

(a) Draw a translation tree for the sentence all cities that Peru built are coastal.

(b) Label each branch in this translation tree with a rule name (forward function application,
backward function application, forward modification, backward modification, argument re-
ordering).

3



(All (λy∶e City y ∧ Build y Peru) Coastal) ∶ t

Coastal ∶ ⟨e, t⟩

coastal

(λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

are

All (λy∶e City y ∧ Build y Peru) ∶ ⟨⟨e, t⟩, t⟩

(λy∶e City y ∧ Build y Peru) ∶ ⟨e, t⟩

(λy∶e Build y Peru) ∶ ⟨e, t⟩

(λy∶e Build y Peru) ∶ ⟨e, t⟩

(λx∶e λy∶e Build y x) ∶
⟨e, ⟨e, t⟩⟩

Build ∶ ⟨e, ⟨e, t⟩⟩

built

Argument Reordering

Peru ∶ e

Peru

Backward Function Application

(λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

that

Forward Function Application

City ∶ ⟨e, t⟩

city

Backward Modification

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

Forward Function Application

Forward Function Application

Practice 11.3: trees with rules

(a) Not all relative clauses need argument re-ordering. Draw a translation tree for the sentence
all countries that border Haiti are coastal.

(b) Label each branch in this translation tree with a rule name (forward function application,
backward function application, forward modification, backward modification, argument re-
ordering).

4



(All (λy∶e Country y ∧ Border Haiti y) Coastal) ∶ t

Coastal ∶ ⟨e, t⟩

coastal

(λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

are

All (λy∶e Country y ∧ Border Haiti y) ∶ ⟨⟨e, t⟩, t⟩

(λy∶e Country y ∧ Border Haiti y) ∶ ⟨e, t⟩

(Border Haiti) ∶ ⟨e, t⟩

(Border Haiti) ∶ ⟨e, t⟩

Haiti ∶ e

Haiti

Border ∶ ⟨e, ⟨e, t⟩⟩

border

Forward Function Application

(λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

that

Forward Function Application

Country ∶ ⟨e, t⟩

countries

Backward Modification

All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

Forward Function Application

Forward Function Application

Practice 12.1: trees with rules

Label the initial tree for Etna erupted in 2021 with rules.

(λe∶e Erupt Etna e ∧ In 2021 e) ∶ ⟨e, t⟩

(λx∶e λe∶e Erupt x e ∧ In 2021 e) ∶ ⟨e, ⟨e, t⟩⟩

(In 2021) ∶ ⟨e, t⟩

2021 ∶ e

2021

In ∶ ⟨e, ⟨e, t⟩⟩

in

Forward Function Application

Erupt ∶ ⟨e, ⟨e, t⟩⟩

erupted

Backward Modification

Etna ∶ e

Etna

Backward Function Application

Practice 12.2: trees with rules

Label the complete tree for Etna erupted in 2021 with rules.

5



(Some (λe∶e Erupt Etna e ∧ In 2021 e) (λe∶e True)) ∶ t

(Some (λe∶e Erupt Etna e ∧ In 2021 e)) ∶ ⟨⟨e, t⟩, t⟩

(λe∶e Erupt Etna e ∧ In 2021 e) ∶ ⟨e, t⟩

(λx∶e λe∶e Erupt x e ∧ In 2021 e) ∶ ⟨e, ⟨e, t⟩⟩

(In 2021) ∶ ⟨e, t⟩

2021 ∶ e

2021

In ∶ ⟨e, ⟨e, t⟩⟩

in

Forward Function Application

Erupt ∶ ⟨e, ⟨e, t⟩⟩

erupted

Backward Modification

Etna ∶ e

Etna

Backward Function Application

Existential Closure

Nuclear Scope Closure

Practice 12.3: trees with rules

Label the tree for Etna erupted after Wolf erupted with rules.

6



(Some (λe∶e Erupt Etna e ∧ (Some⟨e,t⟩ (Erupt Wolf) After) e) (λe∶e True)) ∶ t

(Some (λe∶e Erupt Etna e ∧ (Some⟨e,t⟩ (Erupt Wolf) After) e)) ∶ ⟨⟨e, t⟩, t⟩

(λe∶e Erupt Etna e ∧ (Some⟨e,t⟩ (Erupt Wolf) After) e) ∶ ⟨e, t⟩

(Some⟨e,t⟩ (Erupt Wolf) After) ∶ ⟨e, t⟩

(Some⟨e,t⟩ (Erupt Wolf)) ∶ ⟨⟨e, ⟨e, t⟩⟩, ⟨e, t⟩⟩

(Erupt Wolf) ∶ ⟨e, t⟩

Erupt ∶ ⟨e, ⟨e, t⟩⟩

erupted

Wolf ∶ e

Wolf

BFA

Existential closure

After ∶ ⟨e, ⟨e, t⟩⟩

after

BFA

(Erupt Etna) ∶ ⟨e, t⟩

Erupt ∶ ⟨e, ⟨e, t⟩⟩

erupted

Etna ∶ e

Etna

BFA

Backward Modification

Existential Closure

Nuclear Scope Closure

Practice 13.1:

Write logical translations that distinguish the following sentences:

1. France believes it’s not true that Etna erupted twice.

2. It’s not true that France believes Etna erupted twice.

1. Some (Believe (Intension (Not (Two (Erupt Etna) (λe∶e True)))) France) (λe∶e True)

2. Not (Some (Believe (Intension (Two (Erupt Etna) (λe∶e True))) France) (λe∶e True))

Practice 13.2:

Draw derivation trees (with just types at each branch) for the above expressions:

1. All (λx∶e Volcano x) (λx∶e Want (Intension (See x Speaker)) Speaker)

2. Want (Intension (All (λx∶e Volcano x) (λx∶e See x Speaker))) Speaker

7



t

⟨e, t⟩

)

)

⟨e, t⟩

t

e

Speaker

⟨e, t⟩

⟨s, t⟩

)

)

⟨s, t⟩

t

)

)

t

e

Speaker

⟨e, t⟩

e

x

⟨e, ⟨e, t⟩⟩

See

(

(

⟨t, ⟨s, t⟩⟩

Intension

(

(

⟨⟨s, t⟩, ⟨e, t⟩⟩

Want

λx∶e

λx∶e

(

(

⟨⟨e, t⟩, t⟩

⟨e, t⟩

)

)

⟨e, t⟩

t

e

x

⟨e, t⟩

Volcano

λx∶e

λx∶e

(

(

⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

t

e

Speaker

⟨e, t⟩

⟨s, t⟩

)

)

⟨s, t⟩

t

)

)

t

⟨e, t⟩

)

)

⟨e, t⟩

t

e

Speaker

⟨e, t⟩

e

x

⟨e, ⟨e, t⟩⟩

See

λx∶e

λx∶e

(

(

⟨⟨e, t⟩, t⟩

⟨e, t⟩

)

)

⟨e, t⟩

t

e

x

⟨e, t⟩

Volcano

λx∶e

λx∶e

(

(

⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

All

(

(

⟨t, ⟨s, t⟩⟩

Intension

(

(

⟨⟨s, t⟩, ⟨e, t⟩⟩

Want

8



Practice 13.3:

Write an English translation of the following logical form (with no eventualities) and draw a
derivation tree with a logical form at each branch for your translation:

Want (Intension (Two⟨e,t⟩ Island Contain Italy)) France

You may assume the following expression for the word want:

λp∶t λx∶e Want (Intension p) x

(Want (Intension (Two⟨e,t⟩ Island Contain Italy)) France) ∶ t

(Want (Intension (Two⟨e,t⟩ Island Contain Italy))) ∶ ⟨e, t⟩

(Two⟨e,t⟩ Island Contain Italy) ∶ t

(Two⟨e,t⟩ Island Contain) ∶ ⟨e, t⟩

(Two⟨e,t⟩ Island Contain) ∶ ⟨e, t⟩

(Two⟨e,t⟩ Island) ∶ ⟨e, t⟩

Island ∶ ⟨e, t⟩

islands

Two⟨e,t⟩
∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

two

Contain

contain

(λ f ∶⟨e,t⟩ λx∶e f x)
∶ ⟨⟨e, t⟩, ⟨e, t⟩⟩

to

Italy

Italy

(λp∶t λx∶e Want (Intension p) x)
∶ ⟨t, ⟨e, t⟩⟩

wants

France ∶ e

France

Practice 14.1:

Which of the following are valid entailments?

1. Etna erupts and Wolf erupts, so Etna erupts.

2. Etna erupts or Wolf erupts, so Etna erupts.

3. If Etna erupts then Wolf erupts, and Etna erupts so Wolf erupts.

1. Valid (because of conjunction elimination)

2. Not valid (disjunction may be satisfied by other disjunct)

9



3. Valid (because of modus ponens)

Practice 14.2:

Classify the following as right upward or right downward entailing or neither:

1. at least seven

2. at most seven

3. exactly seven

4. most

1. Right upward (if at least seven volcanoes erupt now then at least seven volcanoes erupt)

2. Right downward (if at most seven volcanoes erupt then at most seven volcanoes erupt now)

3. Neither (no test entailments hold)

4. Right upward (if most volcanoes erupt now then most volcanoes erupt)

Practice 14.3:

Classify the following as left upward or left downward entailing or neither:

1. at least seven

2. at most seven

3. exactly seven

4. most

1. Left upward (if at least seven coastal volcanoes erupt then at least seven volcanoes erupt)

2. Left downward (if at most seven volcanoes erupt then at most seven coastal volcanoes erupt)

3. Neither (no test entailments hold)

4. Neither (no test entailments hold)

Practice 14.4:

Which of the following are valid entailments?

1. Two volcanoes erupted, so Two coastal volcanoes erupted.

2. Two coastal volcanoes erupted, so Two volcanoes erupted.

1. Not valid (the volcanoes may be inland)

10



2. Valid ([at least] two is left upward entailing)

Practice 14.5:

Do the following words behave like negative polarity markers?

1. at all

2. usually

1. Yes (No volcanoes erupt at all is more grammatical than Some volcanoes erupt at all)

2. No (No volcanoes erupt usually is not more grammatical than Some volcanoes erupt usually)

Practice 15.1: trees with sequents

Draw a derivation tree with logical sequents at each branch for the phrase:

each country

in which each country undergoes storage.

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ y ∶ e

⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩

⊢ Country ∶ ⟨e, t⟩

country

⊢ All ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

each

Practice 15.2: trees with sequents

Draw a derivation tree with logical sequents at each branch for the following sentence:

A city in each country is coastal.

in which each country is scoped high.

11



⊢ (All Country (λy∶e Some (λx∶e City x ∧ In y x) Coastal)) ∶ t

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ (Some (λx∶e City x ∧ In y x) Coastal) ∶ t

⊢ Coastal ∶ ⟨e, t⟩

⊢ Coastal ∶
⟨e, t⟩

coastal

⊢ (λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

is

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ (Some (λx∶e City x ∧ In y x) ∶ ⟨⟨e, t⟩, t⟩

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ (λx∶e City x ∧ In y x) ∶ ⟨e, t⟩

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ (In y) ∶ ⟨e, t⟩

(⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩, y ∶ e) ⊢ y ∶ e

⊢ (All Country) ∶ ⟨⟨e, t⟩, t⟩

⊢ Country ∶
⟨e, t⟩

country

⊢ All ∶
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

each

⊢ In ∶
⟨e, ⟨e, t⟩⟩

in

⊢ City ∶
⟨e, t⟩

city

⊢ Some ∶
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

A

Practice 15.3: rule labeling

Label the rules in the above tree for Two volcanoes erupted.

12



⊢ (Two Volcano (λx∶e Some (Erupt x) (λe∶e True))) ∶ t

(⊢ (Two Volcano) ∶ ⟨⟨e, t⟩, t⟩, x ∶ e) ⊢ (Some (Erupt x) (λe∶e True)) ∶ t

(⊢ (Two Volcano) ∶ ⟨⟨e, t⟩, t⟩, x ∶ e) ⊢ (Some (Erupt x)) ∶ ⟨⟨e, t⟩, t⟩

(⊢ (Two Volcano) ∶ ⟨⟨e, t⟩, t⟩, x ∶ e) ⊢ (Erupt x) ∶ ⟨e, t⟩

⊢ Erupt ∶ ⟨e, ⟨e, t⟩⟩

erupted

(⊢ (Two Volcano) ∶ ⟨⟨e, t⟩, t⟩, x ∶ e) ⊢ x ∶ e

⊢ (Two Volcano) ∶ ⟨⟨e, t⟩, t⟩

⊢ Volcano ∶ ⟨e, t⟩

volcanoes

⊢ Two ∶ ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

Two

Forward Function Application

Quantifier Storage

Forward Function Application

Existential Closure

Nuclear Scope Closure

Quantifier Retrieval

Practice 16.1:

Translate the following sentences into logic using Antecedent and Anaphor functions:

Two volcanoes erupted. They are in Italy.

13



(Antecedent 1 Two Volcano Erupt) ∧ (All (Anaphor 1) (In Italy)) ∶ t

(All (Anaphor 1) (In Italy)) ∶ t

(In Italy) ∶ ⟨e, t⟩

(In Italy) ∶ ⟨e, t⟩

Italy ∶
e

Italy

In ∶
⟨e, ⟨e, t⟩⟩

in

(λ f ∶⟨e,t⟩ f ) ∶
⟨⟨e, t⟩, ⟨e, t⟩⟩

are

(All (Anaphor 1)) ∶
⟨e, ⟨e, t⟩⟩

They

∧(Antecedent 1 Two Volcano Erupt) ∶ t

Erupt ∶
⟨e, ⟨e, t⟩⟩

erupted

(Antecedent 1 Two Volcano) ∶ ⟨⟨e, t⟩, t⟩

Volcano ∶
⟨e, t⟩

volcanoes

(Antecedent 1 Two) ∶
⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

Two

Practice 16.2:

Translate the following sentences into logic by expanding Antecedent and Anaphor functions:

Two volcanoes erupted. They are in Italy.

t

t

⟨e, t⟩

e

Italy

⟨e, ⟨e, t⟩⟩

In

⟨⟨e, t⟩, t⟩

⟨e, t⟩

)

)

⟨e, t⟩

t

t

e

x

⟨e, t⟩

Erupt

∧

∧

t

e

x

⟨e, t⟩

Volcano

λx∶e

λx∶e

(

(

. . .

All

∧

∧

t

⟨e, t⟩

Erupt

⟨⟨e, t⟩, t⟩

⟨e, t⟩

Volcano

. . .

Two

14


