CSE 5523: Lecture Notes 1 Introduction and Background

Contents

1.1	Course overview	1
1.2	Background: some math notation (in case you don't know)	1

1.1 Course overview

In the past, computers were used for solving equations:

- what trajectory does a rocket need to reach orbit?
- how profitable are each of our stores?
- etc.

Now, computers are used for **finding** equations (and then also solving them):

- what is the distinction between faces and other images / 'ee' sounds and other sounds?
- what is the distinction between products customers buy and products they don't?
- what kinds of customers do we have?
- how should I invest in order to retire rich?
- etc.

That's machine learning!

There are several different kinds of learning we will look at, based on feedback (labels) in training:

- **supervised** learning: find equations to distinguish **familiar outcomes** (products bought/not) This requires training data with labels (may be expensive).
- **unsupervised** learning: find equations to distinguish **new clusters** in data (customer types) This uses unlabeled training data.
- **reinforcement** learning (if time): find equations for decisions to maximize some **reward** This requires training data with rewards (a type of label).

1.2 Background: some math notation (in case you don't know)

Set notation, involving sets *S*, *S*' and entities $x, x', x'', x_1, x_2, x_3, \ldots$:

First-order logic notation, involving **propositions** p, p' – e.g. that 1<2 (true) or 1=2 (false):

conjunction	$p \land p' \text{ or } p, p' \text{ e.g. } 1 < 2 \land 2 < 3 \text{ or } 1 < 2, 2 < 3$
disjunction	$p \lor p'$ e.g. $1 < 2 \lor 1 > 2$
negation	$\neg p \text{ or } '/' \text{ e.g. } \neg 1=2 \text{ or } 1\neq 2$
existential quantifier	$\exists_{x \in S} \dots x \dots$: disjunction over all x of proposition $\dots x \dots$
universal quantifier	$\forall_{x \in S} \dots x \dots$: conjunction over all x of proposition $\dots x \dots$
indicator	[p]: 1 if p is true, 0 otherwise

Limit notation, involving sets *S* and entities *x*:

existential quantifier	$\bigvee_{x\in S}\ldots x\ldots$:	disjunction over all x of proposition $\ldots x \ldots$
universal quantifier	$\bigwedge_{x\in S}\ldots x\ldots$:	conjunction over all x of proposition $\dots x \dots$
limit union	$\bigcup_{x\in S}\ldots x\ldots$:	union over all x of set $\dots x$
limit intersection	$\bigcap_{x\in S}\ldots x\ldots$:	intersection over all x of set $\dots x$
limit Cartesian product	$X_{x\in S}\ldots x\ldots$:	Cartesian product over all x of set $\dots x$
limit sum	$\sum_{x\in S}\ldots x\ldots$:	sum over all x of number $\dots x \dots$
limit product	$\prod_{x\in S}\ldots x\ldots$	product over all x of number $\dots x \dots$
maximum	$\max_{x \in S} \ldots x \ldots$:	maximum over all x in S of number $\ldots x \ldots$
minimum	$\min_{x\in S}\ldots x\ldots$:	minimum over all x in S of number $\dots x \dots$
maximizing argument	$\operatorname{argmax}_{x \in S} \dots x \dots$:	value of x in S that maximizes number $\ldots x \ldots$
minimizing argument	$\operatorname{argmin}_{x \in S} \dots x \dots$:	value of x in S that minimizes number $\ldots x \ldots$