CSE 5523: Lecture Notes 1 Introduction and Background

Contents

1.1 Course overview . 1
1.2 Background: some math notation (in case you don’t know) 1

1.1 Course overview

In the past, computers were used for solving equations:

- what trajectory does a rocket need to reach orbit?
- how profitable are each of our stores?
- etc.

Now, computers are used for finding equations (and then also solving them):

- what is the distinction between faces and other images / 'ee' sounds and other sounds?
- what is the distinction between products customers buy and products they don't?
- what kinds of customers do we have?
- how should I invest in order to retire rich?
- etc.

That's machine learning!

There are several different kinds of learning we will look at, based on feedback (labels) in training:

- supervised learning: find equations to distinguish familiar outcomes (products bought/not)

This requires training data with labels (may be expensive).

- unsupervised learning: find equations to distinguish new clusters in data (customer types)

This uses unlabeled training data.

- reinforcement learning (if time): find equations for decisions to maximize some reward

This requires training data with rewards (a type of label).

1.2 Background: some math notation (in case you don't know)

Set notation, involving sets S, S^{\prime} and entities $x, x^{\prime}, x^{\prime \prime}, x_{1}, x_{2}, x_{3}, \ldots$:

pair	$\left\langle x_{1}, x_{2}\right\rangle$
tuple	$\left\langle x_{1}, x_{2}, x_{3}, \ldots\right\rangle$
set	$S=\{x \mid \ldots\}$ e.g. $\left\{x_{1}, x_{2}, x_{3}\right\}$
empty/null set	\emptyset or $\}$
element	$x \in S$ e.g. $x_{2} \in\left\{x_{1}, x_{2}\right\}, x_{3} \notin\left\{x_{1}, x_{2}\right\}$
subset (or equal)	$S \subset S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \subset\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}\right\} \subseteq\left\{x_{1}, x_{2}\right\}$
union	$S \cup S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \cup\left\{x_{2}, x_{3}\right\}=\left\{x_{1}, x_{2}, x_{3}\right\}$
intersection	$S \cap S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \cap\left\{x_{2}, x_{3}\right\}=\left\{x_{2}\right\}$
exclusion or complementation	$S-S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\}-\left\{x_{2}, x_{3}\right\}=\left\{x_{1}\right\}$
Cartesian product	$S \times S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \times\left\{x_{3}, x_{4}\right\}=\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{1}, x_{4}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle,\left\langle x_{2}, x_{4}\right\rangle\right\}$
power set	$\mathcal{P}(S)$ or 2^{S} e.g. $\mathcal{P}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$
relation	$R \subseteq S \times S^{\prime}=\left\{\left\langle x, x^{\prime}\right\rangle \mid \ldots\right\}$ e.g. $R=\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle,\left\langle x_{2}, x_{4}\right\rangle\right\}$
function	$F: S \rightarrow S^{\prime} \subseteq S \times S^{\prime}$ s.t. if $\left\langle x, x^{\prime}\right\rangle,\left\langle x, x^{\prime \prime}\right\rangle \in F$ then $x^{\prime}=x^{\prime \prime}$
cardinality	$\|S\|=$ number of elements in S
integers	$\mathbb{Z}:$ the countably infinite set of integers
integer ranges	$\mathbb{Z}_{m}^{n}:$ the set of integers between m and n (inclusive)
integer tuples	$\mathbb{Z}^{n}:$ the countably infinite set of n-tuples of integers
real numbers	$\mathbb{R}:$ the uncountably infinite set of real numbers
real ranges	$\mathbb{R}_{m}^{n}:$ the real numbers between m and n (inclusive)
real tuples	$\mathbb{R}^{n}:$ the uncountably infinite set of n-tuples of reals

First-order logic notation, involving propositions $p, p^{\prime}-$ e.g. that $1<2$ (true) or $1=2$ (false):

```
conjunction }\quadp\wedge\mp@subsup{p}{}{\prime}\mathrm{ or }p,\mp@subsup{p}{}{\prime}\mathrm{ e.g. }1<2\wedge2<3\mathrm{ or }1<2,2<
disjunction p
negation }\quad\negp\mathrm{ or '/' e.g. }\neg1=2\mathrm{ or }1\not=
existential quantifier }\mp@subsup{\exists}{x\inS}{}\ldotsx\ldots\mathrm{ : disjunction over all }x\mathrm{ of proposition ...x...
universal quantifier }\mp@subsup{\forall}{x\inS}{}\ldotsx\ldots\mathrm{ : conjunction over all }x\mathrm{ of proposition ...x...
indicator |p\rrbracket: 1 if p is true, 0 otherwise
```

Limit notation, involving sets S and entities x :
existential quantifier
universal quantifier
limit union
limit intersection $\bigcap_{x \in S} \ldots x \ldots$:
limit Cartesian product
limit sum
limit product
maximum
minimum
maximizing argument minimizing argument
$\bigvee_{x \in S} \ldots x \ldots$:
$\bigwedge_{x \in S} \ldots x \ldots$:
$\bigcup_{x \in S} \ldots x \ldots:$
$\bigcap_{x \in S} \ldots x \ldots:$
$X_{x \in S} \ldots x \ldots:$
$\sum_{x \in S} \ldots x \ldots$:
$\prod_{x \in S} \ldots x \ldots:$
$\max _{x \in S} \ldots x \ldots$:
$\min _{x \in S} \ldots x \ldots$:
$\operatorname{argmax}_{x \in S} \ldots x \ldots$:
$\operatorname{argmin}_{x \in S} \ldots x \ldots$: value of x in S that minimizes number $\ldots x \ldots$

