CSE 5523: Lecture Notes 2 Probability

Contents

2.1 Background: probability and probability spaces [Kolmogorov, 1933] 1
2.2 A simple example 2
2.3 Optimality of relative frequency estimation 3
2.4 Optimal continuous parameter estimation 4

2.1 Background: probability and probability spaces [Kolmogorov, 1933]

Probability is defined over a measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ where the measure P (probability) sums to one. This probability measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ consists of:

1. a sample space O - a non-empty set of outcomes;
2. a sigma-algebra $\mathcal{E} \subseteq 2^{O}$ - a set of events which are subsets in the power set of O such that:
(a) \mathcal{E} contains $O: O \in \mathcal{E}$,
(b) \mathcal{E} is closed under complementation: $\forall_{A \in \mathcal{E}} O-A \in \mathcal{E}$,
(c) \mathcal{E} is closed under countable union: $\forall_{A_{1} . . A_{\infty} \in \mathcal{E}} \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{E}$
(this set of events will serve as the domain of our probability function);
3. a probability measure $\mathrm{P}: \mathcal{E} \rightarrow \mathbb{R}_{0}^{\infty}$ - a function from events to non-negative reals such that:
(a) the P measure is countably additive: $\forall_{A_{1} . . A_{\infty} \in \mathcal{E} \text { s.t. } \forall_{i, j}} A_{i} \cap A_{j}=\emptyset \quad \mathrm{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right)$,
(b) the P measure of entire space is one: $\mathrm{P}(O)=1$.

These are the Kolmogorov axioms of probability.

This characterization is helpful because it unifies probability spaces that may seem very different:

1. discrete spaces - e.g. a coin:

2. continuous spaces - e.g. a dart (here $2^{\mathbb{R}^{2}}$ is a Borel algebra: a set of all open subsets of \mathbb{R}^{2}):

(events must be open sets/ranges of outcomes because point outcomes have zero probability)
3. joint spaces using Cartesian products of sample spaces - e.g. two coins $(\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\})$: $\langle\underbrace{\langle\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}}_{O}, \underbrace{\{0,\{\mathrm{HH}\}, \ldots,\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}\}}_{\mathcal{E}}, \underbrace{\{\langle\emptyset, 0\rangle,\langle\{\mathrm{HH}\}, .25\rangle, \ldots,\langle\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}, 1\rangle\}\rangle}_{\mathrm{P}}$

Also note: the set of outcomes can be larger than the set of events - e.g. a die used even/odd:

This axiomatization entails, for any events (sets of outcomes) $A, B \in \mathcal{E}$:

1. $\mathrm{P}(A) \in \mathbb{R}_{0}^{1}$
2. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

Minimal events - those used as base cases in the closure operations - are called atomic events.
Atomic events in continuous models can have any size you want (like even/odd die), but not points.

Though probabilities are defined over sets of outcomes, we often write them using propositions.
For example, if $O=X \times Y$ and therefore $\forall_{o \in O} O=\left\langle x_{o}, y_{o}\right\rangle$:

$$
\begin{array}{llll}
\mathrm{P}(x) & =\mathrm{P}(X=x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x\right\}\right) & \text { (allow any value for } y_{o} \text { component) } \\
\mathrm{P}(x \wedge y)=\mathrm{P}(X=x \wedge Y=y) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x \wedge y_{o}=y\right\}\right) \\
\mathrm{P}(\neg x) & =\mathrm{P}(X \neq x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o} \neq x\right\}\right)
\end{array}
$$

Random variables D are functions from outcomes x_{o}, y_{o} to values, e.g. distance of point to origin.
Often we will simply use Cartesian factors of a joint sample space (X, Y) as random variables.

Distributions are sometimes written as probabilities over (all values of) random variables:

$$
\mathrm{P}(X)=\mathrm{P}(Y) \quad \Leftrightarrow \quad \forall_{x \in X} \forall_{y \in Y} \mathrm{P}(x)=\mathrm{P}(y) .
$$

We can also define conditional probabilities as ratios of these measures: $\mathrm{P}(y \mid x)=\frac{\mathrm{P}(x \wedge y)}{\mathrm{P}(x)}$.

2.2 A simple example

We can now distinguish some different kinds of (supervised) learning:

- classification: $\hat{y}=\operatorname{argmax}_{y} \mathrm{P}(y \mid x)$ with $y \in \mathbb{Z}^{n}$ (countable)
- regression: $\hat{y}=\operatorname{argmax}_{y} \mathrm{P}(y \mid x)$ with $y \in \mathbb{R}^{n}$ (uncountable)

We then define a frequency space $\langle O, \mathcal{E}, \mathcal{F}\rangle$ - same measure space with no $\mathrm{P}(O)=1$ constraint.
We can define a frequency space using counts of some set of atomic events in some training data.

For example a model for fruits and colors：
〈 \｛〈apple，red〉，〈apple，green〉，〈pear，red〉，〈pear，green〉\},
$\{\emptyset,\{\langle$ apple，red $\rangle\},\{\langle$ apple，green $\rangle\},\{\langle$ pear，red $\rangle\},\{\langle$ pear，green $\rangle\}, \ldots\}$
$\{\langle\emptyset, 0\rangle,\langle\{\langle$ apple，red $\rangle\}, 2\rangle,\langle\{\langle$ apple，green $\rangle\}, 1\rangle,\langle\{\langle$ pear，red $\rangle\}, 0\rangle,\langle\{\langle$ pear，green $\rangle\}, 2\rangle, \ldots\}\rangle$
（Counts for larger sets are simply sums，according to axiom 3a．）

We can now define a very simple machine learning example：

$$
\mathrm{P}(A)=\frac{\mathrm{F}(A)}{\mathrm{F}(O)}
$$

〈 \｛〈apple，red〉，〈apple，green〉，〈pear，red〉，〈pear，green〉\},
$\{\emptyset,\{\langle$ apple，red $\rangle\},\{\langle$ apple，green $\rangle\},\{\langle$ pear，red $\rangle\},\{\langle$ pear，green $\rangle\}, \ldots\}$
$\{\langle\emptyset, 0\rangle,\langle\{\langle$ apple，red $\rangle\}, .4\rangle,\langle\{\langle$ apple，green $\rangle\}, .2\rangle,\langle\{\langle$ pear，red $\rangle\}, 0\rangle,\langle\{\langle$ pear，green $\rangle\}, .4\rangle, \ldots\}\rangle$
（Counts for larger sets are simply sums，according to axiom 3a．）
This is called relative frequency estimation．

2．3 Optimality of relative frequency estimation

Relative frequency estimation assigns the highest probability to your data！
Recall combination notation－number of orderings to choose $n_{1}, n_{2}, n_{3}, \ldots$ of each category：

$$
\binom{\sum_{j} n_{j}}{n_{1}, n_{2}, n_{3}, \ldots}=\frac{\left(\sum_{j} n_{j}\right)!}{n_{1}!n_{2}!n_{3}!\ldots}
$$

Using multinomial parameters p_{1}, p_{2}, \ldots ，the probability of atomic event counts n_{1}, n_{2}, \ldots is：

$$
\begin{aligned}
\binom{\sum_{j} n_{j}}{n_{1}, n_{2}, \ldots} \prod_{j}\left(p_{j}\right)^{n_{j}} & =\binom{\sum_{j} n_{j}}{X_{j}\left\{n_{j}\right\}} \prod_{j}\left(p_{j}\right)^{n_{j}} \\
& =\binom{5}{2,1,0,2} \mathrm{P}(\text { apple,red })^{2} \mathrm{P}(\text { apple,green })^{1} \mathrm{P}(\text { pear,red })^{0} \mathrm{P}(\text { pear,green })^{2}
\end{aligned}
$$

The parameters p_{i} that maximize probability of data are those where slope（derivative）is zero：

$$
\begin{array}{rlr}
0 & =\frac{\partial}{\partial p_{i}}\binom{\sum_{j} n_{j}}{X_{j}\left\{n_{j}\right\}} \prod_{j}\left(p_{j}\right)^{n_{j}} & \\
& =\frac{\partial}{\partial p_{i}}\binom{\sum_{j} n_{j}}{n_{i}}\left(p_{i}\right)^{n_{i}}\binom{\sum_{j \neq i} n_{j}}{X_{j \neq i}\left(n_{j}\right\}} \prod_{j \neq i}\left(p_{j}\right)^{n_{j}} & \text { definition of limit product } \\
& =\frac{\partial}{\partial p_{i}}\binom{\sum_{j} n_{j}}{n_{i}}\left(p_{i}\right)^{n_{i}}\left(1-p_{i}\right)^{\sum_{j \neq i} n_{j}} & \text { multinomial distribution sums to one }
\end{array}
$$

$$
\begin{array}{lr}
=\binom{\sum_{j} n_{j}}{n_{i}} \frac{\partial}{\partial p_{i}}\left(p_{i}\right)^{n_{i}\left(1-p_{i}\right)^{\Sigma_{j \neq i} n_{j}}} & \text { product rule } \\
=\frac{\partial}{\partial p_{i}}\left(p_{i}\right)^{n_{i}}\left(1-p_{i}\right)^{\Sigma_{j \neq i} n_{j}} & \text { division by }\binom{\sum_{j} n_{j}}{n_{i}} \\
=\frac{\partial}{\partial p} p^{n}(1-p)^{m} & \text { let } p=p_{i}, n=n_{i}, m=\sum_{j \neq i} n_{j} \\
=\left(\frac{\partial}{\partial p} p^{n}\right)(1-p)^{m}+p^{n}\left(\frac{\partial}{\partial p}(1-p)^{m}\right) & \text { product rule } \\
=n p^{n-1}(1-p)^{m}+p^{n} m(1-p)^{m-1}\left(\frac{\partial}{\partial p} 1-p\right) & \text { power rule } \\
=n p^{n-1}(1-p)^{m}+p^{n} m(1-p)^{m-1}(-1) & \text { power rule } \\
=p^{n-1}(1-p)^{m-1}(n(1-p)-m p) & \begin{array}{l}
\text { distributive axiom } \\
=p^{n-1}(1-p)^{m-1}(n-n p-m p)
\end{array} \\
=\underbrace{p^{n-1}}_{\text {root: } \hat{p}=0} \underbrace{(1-p)^{m-1}}_{\text {root: } \hat{p}=1} \underbrace{(n-(n+m) p)}_{\text {root: } \hat{p}=\frac{n}{n+m}} & \begin{array}{l}
\text { distributive axiom } \\
\text { distributive axiom }
\end{array}
\end{array}
$$

So (ignoring the 0 and 1 roots, which are minima) the optimal parameters are all $\hat{p}_{i}=\frac{n_{i}}{\sum_{j} n_{j}}$. This is called a maximum likelihood estimate.

2.4 Optimal continuous parameter estimation

'Normal' (Gaussian) distributions with parameters for mean μ and standard deviation σ :

$$
\mathcal{N}_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-(x-\mu)^{2}}{2 \sigma^{2}}
$$

also have an easy optimal parameter estimate that maximizes the probability of data x_{1}, x_{2}, \ldots. (If you are designing novel distributions, you may also want easy optimal parameter estimation!) Again, the parameters μ, σ that maximize probability are those where slope (derivative) is zero:

$$
\begin{array}{rlr}
0 & =\frac{\partial}{\partial \mu} \prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \\
0 & =\frac{\partial}{\partial \mu} \ln \prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \\
& =\frac{\partial}{\partial \mu} \sum_{i} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \\
& =\sum_{i} \frac{\partial}{\partial \mu} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \\
& =\sum_{i} \frac{\partial}{\partial \mu} \ln \frac{1}{\sigma \sqrt{2 \pi}}+\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} &
\end{array}
$$

$$
\begin{aligned}
& =\sum_{i} \frac{\partial}{\partial \mu} \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} \\
& =\sum_{i}-\frac{1}{2 \sigma^{2}} \frac{\partial}{\partial \mu}\left(x_{i}-\mu\right)^{2} \\
& =\sum_{i}-\frac{1}{2 \sigma^{2}}(-1) 2\left(x_{i}-\mu\right) \\
& =\frac{1}{\sigma^{2}} \sum_{i}\left(x_{i}-\mu\right) \\
& =\sum_{i}\left(x_{i}-\mu\right) \\
& =-n \mu+\sum_{i}^{n} x_{i} \\
& \underbrace{}_{\text {root: } \hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}}
\end{aligned}
$$

And for the standard deviation:

$$
\begin{array}{rlr}
0 & =\frac{\partial}{\partial \sigma} \prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \\
0 & =\frac{\partial}{\partial \sigma} \ln \prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \text { max of function is max of log } \\
& =\frac{\partial}{\partial \sigma} \sum_{i} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \\
& =\sum_{i} \frac{\partial}{\partial \sigma} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \\
& =\sum_{i} \frac{\partial}{\partial \sigma} \ln \frac{1}{\sigma \sqrt{2 \pi}}+\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \text { sum of product is sum of logs } \\
& =\sum_{i} \frac{\partial}{\partial \sigma}-\ln (\sigma \sqrt{2 \pi})+\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \text { log of product is sum of logs } \\
& =\sum_{i} \frac{\partial}{\partial \sigma}-\ln \left(\sqrt{\sigma^{2} 2 \pi}\right)+\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} & \text { square root of square } \\
& =\sum_{i}\left(\frac{\partial}{\partial \sigma}-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)\right)+\left(\frac{\partial}{\partial \sigma} \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \text { sum rule } \\
& =\left(\frac{\partial}{\partial \sigma}-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)\right)+\sum_{i}\left(\frac{\partial}{\partial \sigma} \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) & \text { constant in discrete sum } \\
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} \ln \left(2 \pi \sigma^{2}\right)\right)+\sum_{i} \frac{1}{2}\left(-\left(x_{i}-\mu\right)^{2} \frac{\partial}{\partial \sigma} \frac{1}{\sigma^{2}}\right) & \text { product rule } \\
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} \ln \left(2 \pi \sigma^{2}\right)\right)+\sum_{i} \frac{1}{2}\left(-\left(x_{i}-\mu\right)^{2}(-2) \frac{1}{\sigma^{3}}\right) & \text { power rule }
\end{array}
$$

$$
\begin{array}{rrr}
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} \ln \left(2 \pi \sigma^{2}\right)\right)+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { distributive axiom } \\
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} \ln (2 \pi)+\ln \left(\sigma^{2}\right)\right)+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { log of product is sum of logs } \\
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} \ln \left(\sigma^{2}\right)\right)+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { derivative of constant } \\
& =-\frac{n}{2}\left(\frac{\partial}{\partial \sigma} 2 \ln (\sigma)\right)+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { log of power } \\
& =-n\left(\frac{\partial}{\partial \sigma} \ln (\sigma)\right)+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { product rule } \\
& =-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { derivative of log } \\
& =-n+\frac{1}{\sigma^{2}} \sum_{i}\left(x_{i}-\mu\right)^{2} & \text { multiply by } \sigma \\
\underbrace{}_{\text {root: } \hat{\sigma}=\sqrt{\frac{1}{n}} \sum_{i}\left(x_{i}-\mu\right)^{2}} &
\end{array}
$$

References

[Kolmogorov, 1933] Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. Second English Edition, Foundations of Probability 1950, published by Chelsea, New York.

