CSE 5523: Lecture Notes 5 Decision Theory

Contents

5.1	Decision procedures / policies
5.2	Decision-theoretic parameter estimation
5.3	Evaluation and visualization
5.4	Bayesian vs. frequentist hypothesis testing
5.5	Sample code

5.1 Decision procedures / policies

Given a model and training data, we have options for making classification/regression decisions *a*. This lets us talk about utility (value / negative cost) without confusing it with epistemology (truth). (E.g., we prefer false positive to false negative in a cancer screen, even if estimator is more wrong.)

Estimation decision actions *a* come from estimator functions δ based on variable values x_1, \ldots, x_V :

$$a = \delta(x_1, \ldots, x_V)$$

This estimator (or 'decision procedure') can then be defined to minimize expected loss L(y, a):

$$\delta_{p_1, p_2, \dots}(x_1, \dots, x_V) = \operatorname*{argmin}_{a} \mathsf{E}_{y \sim \mathsf{P}_{p_1, p_2, \dots}(y \mid x_1, \dots, x_V)} \mathsf{L}(y, a)$$

 $(\mathsf{E}_{y \sim \mathsf{P}(y)} f(y) = \sum_{y} \mathsf{P}(y) \cdot f(y)$ is the expected value of f(y), weighted by $\mathsf{P}(y)$.)

We can define different loss functions, which measure the cost (-utility) of wrong decisions:

• zero-one loss — lose a point for each wrong answer:

$$\mathsf{L}_{0,1}(y,a) = \llbracket y \neq a \rrbracket = \begin{cases} 0 & \text{if } a = y \\ 1 & \text{if } a \neq y \end{cases}$$

• zero-one loss with reject — lose fewer points if we admit we don't know (a_{REJECT}) :

$$\mathsf{L}_{0,\lambda_R,\lambda_S}(y,a) = \begin{cases} 0 & \text{if } a = y \\ \lambda_R & \text{if } a = a_{\text{REJECT}} \\ \lambda_S & \text{if } a \neq y \land a \neq a_{\text{REJECT}} \end{cases},$$

• false-positive false-negative loss — lose different points for false positive/negative:

$$\mathsf{L}_{\mathrm{FP},\mathrm{FN}}(y,a) = \begin{cases} 0 & \text{if } a = y \\ \lambda_{\mathrm{FP}} & \text{if } a = 1 \land y = 0, \\ \lambda_{\mathrm{FN}} & \text{if } a = 0 \land y = 1 \end{cases}$$

- linear/absolute loss lose the difference between the estimate and the training example: $L_1(y, a) = |y - a|,$
- quadratic loss lose the square of the difference between estimate and training example: $L_2(y, a) = (y - a)^2$.
- **negative log loss** lose the neg. log of the difference betw. estimate and training example: $L_{NL}(y, a) = -\ln(a)$ (used for probabilities; goal probability of training example is 1).

We can still define estimators to output a-posteriori most probable outcomes for y as a:

$$\delta_{p_1,p_2,\dots}(x_1,\dots,x_V) = \underset{a}{\operatorname{argmin}} \operatorname{\mathsf{E}}_{y\sim\mathsf{P}_{p_1,p_2,\dots}(y|x_1,\dots,x_V)} \operatorname{\mathsf{L}}(y,a)$$

= $\underset{a}{\operatorname{argmin}} \sum_{y} \operatorname{\mathsf{P}}_{p_1,p_2,\dots}(y|x_1,\dots,x_V) \cdot \operatorname{\mathsf{L}}_{0,1}(y,a)$ (for discrete y)
= $\underset{a}{\operatorname{argmin}} \int \operatorname{\mathsf{P}}_{p_1,p_2,\dots}(y|x_1,\dots,x_V) \cdot \operatorname{\mathsf{L}}_2(y,a) \, dy$ (for continuous y)

This will choose the y with the maximum probability to avoid losses on other y outcomes.

5.2 Decision-theoretic parameter estimation

We can also use these estimators to estimate parameters p_1, p_2, \ldots as *a*:

$$\delta_{h_1,h_2,\dots}(\mathcal{D}) = \operatorname*{argmin}_{a} \mathsf{E}_{p_1,p_2,\dots} \mathsf{P}_{h_1,h_2,\dots}(p_1,p_2,\dots|\mathcal{D})} \mathsf{L}_{\mathrm{GE}}(\langle p_1, p_2,\dots\rangle, a)$$

This uses a generalization error loss function, which itself contains another estimator δ for y:

$$\mathsf{L}_{\mathsf{GE}}(\langle p_1, p_2, \ldots \rangle, a) = \mathsf{E}_{y, x_1, \ldots, x_V \sim \mathsf{P}_{p_1, p_2, \ldots}(y, x_1, \ldots, x_V)} \mathsf{L}(y, \delta_a(x_1, \ldots, x_V))$$

So, substituting these and using the definition of expected value produces a big marginal:

$$\delta_{h_1,h_2,\dots}(\mathcal{D}) = \underset{a}{\operatorname{argmin}} \mathsf{E}_{p_1,p_2,\dots,\mathsf{P}_{h_1,h_2,\dots}(p_1,p_2,\dots|\mathcal{D})} \mathsf{E}_{y,x_1,\dots,x_V} \mathsf{P}_{p_1,p_2,\dots}(y,x_1,\dots,x_V)} \mathsf{L}(y,\delta_a(x_1,\dots,x_V))$$

$$= \underset{a}{\operatorname{argmin}} \int \mathsf{P}_{h_1,h_2,\dots}(p_1,p_2,\dots|\mathcal{D}) \cdot \sum_{y,x_1,\dots,x_V} \mathsf{P}_{p_1,p_2,\dots}(y,x_1,\dots,x_V) \cdot \mathsf{L}(y,\delta_a(x_1,\dots,x_V)) \, dp_1 dp_2 \dots$$

This allows us to define parameters p_1, p_2, \ldots that respect our loss function over y.

5.3 Evaluation and visualization

If we want to evaluate a set of binary estimators for some threshold τ on test data:

$$\delta(x_1, \dots, x_V) = \begin{cases} 1 & \text{if } \mathsf{P}(y=1 \mid x_1, \dots, x_V) > \tau \\ 0 & \text{otherwise} \end{cases}$$

we can't always compare these estimators because they may be optimal at different thresholds τ . But we can graph the rate of false positives (a=1, y=0) and true positives (a=1, y=1) over all τ . This is called a **receiver operator (ROC) curve**.

If one estimator's curve is more bowed out toward (0, 1) than another, we may prefer that estimator.

Sometimes we have a large space of vastly more y=0 examples (e.g. faces in possible rectangles). In this case we can graph the **recall** (*R*) and **precision** (*P*) over all τ for examples *i* in \mathcal{D} :

$$P = \frac{\sum_{i} [[a_{i}=1 \land y_{i}=1]]}{\sum_{i} [[a_{i}=1]]}$$
$$R = \frac{\sum_{i} [[a_{i}=1 \land y_{i}=1]]}{\sum_{i} [[y_{i}=1]]}$$

This is called a **precision-recall** curve.

Likewise, if one curve is more bowed out toward (1, 1) than another, we may prefer that estimator.

We can also report **F** scores, which are the harmonic mean of recall and precision:

$$F_{1} = \frac{2}{\frac{1}{p} + \frac{1}{R}}$$
(harmonic mean: inverse of average of inverses)

$$= \frac{2RP}{R+P}$$
(multiply numerator and denominator by *RP*)

$$= \frac{2\sum_{i} [[a_{i}=1]] + \sum_{i} [[y_{i}=1]]]}{\sum_{i} [[a_{i}=1]] + \sum_{i} [[y_{i}=1]]]}$$
(from line 1, substituting definitions)

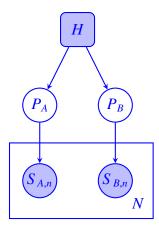
Sometimes we want to evaluate multiple hypotheses y_i on a common dataset \mathcal{D} . In this case we can report a **false discovery rate** (*FDR*):

$$FDR(\tau, \mathcal{D}) = \frac{\sum_{i} \mathsf{P}(y_{i}=0 \mid \mathcal{D}) \cdot \llbracket \mathsf{P}(y_{i}=1 \mid \mathcal{D}) > \tau \rrbracket}{\sum_{i} \llbracket \mathsf{P}(y_{i}=1 \mid \mathcal{D}) > \tau \rrbracket}$$

5.4 Bayesian vs. frequentist hypothesis testing

Remember earlier we did Bayesian hypothesis testing?

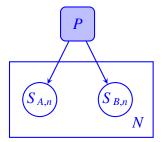
We drew several samples of parameters, and counted the number that satisfied $p_B > p_A$:



You'll also see frequentist hypothesis testing, maybe a lot.

In frequentist statistics, parameters aren't random variables, they're fixed properties of data.

We then test hypotheses by drawing samples of *the data s*, then comparing them to the real data \tilde{s} :



For example, the data may be classifier scores, and the comparison may be $\frac{\sum_i [[\tilde{s}_{B,i} > \tilde{s}_{A,i}]]}{N} > \frac{\sum_i [[\tilde{s}_{B,i} > \tilde{s}_{A,i}]]}{N}$.

An easy way to do this is to randomly swap each pair *i* of A and B scores in the real data.

This is called **permutation testing**.

It ensures the data are drawn from the same distribution, even if you don't know its parameters. For this reason, it's called a **non-parametric test**.

5.5 Sample code

Here's sample code for the permutation test:

```
import sys
import numpy
import pandas
SS = pandas.read_csv(sys.argv[1])
numsamples = 1000
randWins = 0
for i in range(numsamples):
```

print('Probability of same or better score due to chance: ' + str(randWins/numsamples))

Run on our small set:

scoreA, scoreB 0,0 0,0 0,0 0,1 0,1 0,1 1,0 1,1

we get a high probability that the results are due to chance:

Probability of same or better score due to chance: 0.688

If we run it on a larger test set (this is just twice as many of each outcome):

scoreA,scoreB 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,1 0,1 1.0 1,0 1,1 1,1

we get a lower probability that the results are due to chance:

Probability of same or better score due to chance: 0.64