
CSE 5523: Lecture Notes 5
Decision Theory

Contents
5.1 Decision procedures / policies . 1
5.2 Decision-theoretic parameter estimation . 2
5.3 Evaluation and visualization . 2
5.4 Bayesian vs. frequentist hypothesis testing . 3
5.5 Sample code . 4

5.1 Decision procedures / policies
Given a model and training data, we have options for making classification/regression decisions a.

This lets us talk about utility (value / negative cost) without confusing it with epistemology (truth).

(E.g., we prefer false positive to false negative in a cancer screen, even if estimator is more wrong.)

Estimation decision actions a come from estimator functions δ based on variable values x1, . . . , xV :

a = δ(x1, . . . , xV)

This estimator (or ‘decision procedure’) can then be defined to minimize expected loss L(y, a):

δp1,p2,...(x1, . . . , xV) = argmin
a

Ey∼Pp1 ,p2 ,...(y | x1,...,xV) L(y, a)

(Ey∼P(y) f (y) =
∑

y P(y) · f (y) is the expected value of f (y), weighted by P(y).)

We can define different loss functions, which measure the cost (−utility) of wrong decisions:

• zero-one loss — lose a point for each wrong answer:

L0,1(y, a) = ~y , a� =

0 if a = y
1 if a , y

,

• zero-one loss with reject — lose fewer points if we admit we don’t know (aREJECT):

L0,λR,λS (y, a) =

0 if a = y
λR if a = aREJECT

λS if a , y ∧ a , aREJECT

,

• false-positive false-negative loss — lose different points for false positive/negative:

LFP,FN(y, a) =

0 if a = y
λFP if a=1 ∧ y=0
λFN if a=0 ∧ y=1

,

1

• linear/absolute loss — lose the difference between the estimate and the training example:

L1(y, a) = |y − a|,

• quadratic loss — lose the square of the difference between estimate and training example:

L2(y, a) = (y − a)2.

• negative log loss — lose the neg. log of the difference betw. estimate and training example:

LNL(y, a) = − ln(a) (used for probabilities; goal probability of training example is 1).

We can still define estimators to output a-posteriori most probable outcomes for y as a:

δp1,p2,...(x1, . . . , xV) = argmin
a

Ey∼Pp1 ,p2 ,...(y | x1,...,xV) L(y, a)

= argmin
a

∑
y

Pp1,p2,...(y | x1, . . . , xV) · L0,1(y, a) (for discrete y)

= argmin
a

∫
Pp1,p2,...(y | x1, . . . , xV) · L2(y, a) dy (for continuous y)

This will choose the y with the maximum probability to avoid losses on other y outcomes.

5.2 Decision-theoretic parameter estimation
We can also use these estimators to estimate parameters p1, p2, . . . as a:

δh1,h2,...(D) = argmin
a

Ep1,p2,···∼Ph1 ,h2 ,...(p1,p2,... | D) LGE(〈p1, p2, . . .〉, a)

This uses a generalization error loss function, which itself contains another estimator δ for y:

LGE(〈p1, p2, . . .〉, a) = Ey,x1,...,xV∼Pp1 ,p2 ,...(y,x1,...,xV) L(y, δa(x1, . . . , xV))

So, substituting these and using the definition of expected value produces a big marginal:

δh1,h2,...(D) = argmin
a

Ep1,p2,···∼Ph1 ,h2 ,...(p1,p2,... | D) Ey,x1,...,xV∼Pp1 ,p2 ,...(y,x1,...,xV) L(y, δa(x1, . . . , xV))

= argmin
a

∫
Ph1,h2,...(p1, p2, . . . | D) ·

∑
y,x1,...,xV

Pp1,p2,...(y, x1, . . . , xV) · L(y, δa(x1, . . . , xV)) dp1dp2 . . .

This allows us to define parameters p1, p2, . . . that respect our loss function over y.

5.3 Evaluation and visualization
If we want to evaluate a set of binary estimators for some threshold τ on test data:

δ(x1, . . . , xV) =

1 if P(y=1 | x1, . . . , xV) > τ
0 otherwise

2

we can’t always compare these estimators because they may be optimal at different thresholds τ.

But we can graph the rate of false positives (a=1, y=0) and true positives (a=1, y=1) over all τ.

This is called a receiver operator (ROC) curve.

If one estimator’s curve is more bowed out toward (0, 1) than another, we may prefer that estimator.

Sometimes we have a large space of vastly more y=0 examples (e.g. faces in possible rectangles).

In this case we can graph the recall (R) and precision (P) over all τ for examples i inD:

P =

∑
i~ai=1 ∧ yi=1�∑

i~ai=1�

R =

∑
i~ai=1 ∧ yi=1�∑

i~yi=1�

This is called a precision-recall curve.

Likewise, if one curve is more bowed out toward (1, 1) than another, we may prefer that estimator.

We can also report F scores, which are the harmonic mean of recall and precision:

F1 =
2

1
P + 1

R

(harmonic mean: inverse of average of inverses)

=
2RP

R + P
(multiply numerator and denominator by RP)

=
2
∑

i~ai=1 ∧ yi=1�∑
i~ai=1� +

∑
i~yi=1�

(from line 1, substituting definitions)

Sometimes we want to evaluate multiple hypotheses yi on a common datasetD.

In this case we can report a false discovery rate (FDR):

FDR(τ,D) =

∑
i P(yi=0 | D) · ~P(yi=1 | D) > τ�∑

i~P(yi=1 | D) > τ�

5.4 Bayesian vs. frequentist hypothesis testing
Remember earlier we did Bayesian hypothesis testing?

We drew several samples of parameters, and counted the number that satisfied pB > pA:

3

H

PA PB

S A,n S B,n

N

You’ll also see frequentist hypothesis testing, maybe a lot.

In frequentist statistics, parameters aren’t random variables, they’re fixed properties of data.

We then test hypotheses by drawing samples of the data s, then comparing them to the real data s̃:

P

S A,n S B,n

N

For example, the data may be classifier scores, and the comparison may be
∑

i~sB,i>sA,i�

N >
∑

i~s̃B,i>s̃A,i�

N .

An easy way to do this is to randomly swap each pair i of A and B scores in the real data.

This is called permutation testing.

It ensures the data are drawn from the same distribution, even if you don’t know its parameters.

For this reason, it’s called a non-parametric test.

5.5 Sample code
Here’s sample code for the permutation test:

import sys

import numpy

import pandas

SS = pandas.read_csv(sys.argv[1])

numsamples = 1000

randWins = 0

for i in range(numsamples):

4

trialsBwins = 0

for n,(sa,sb) in SS.iterrows():

if numpy.random.binomial(p=.5,n=1)>=.5: trialsBwins = trialsBwins + (1 if sa>sb else 0)

else: trialsBwins = trialsBwins + (1 if sb>sa else 0)

if trialsBwins >= len(SS[SS[’scoreB’]==1]) - len(SS[SS[’scoreA’]==1]): randWins = randWins + 1

print(’Probability of same or better score due to chance: ’ + str(randWins/numsamples))

Run on our small set:

scoreA,scoreB

0,0

0,0

0,0

0,1

0,1

0,1

1,0

1,1

we get a high probability that the results are due to chance:

Probability of same or better score due to chance: 0.688

If we run it on a larger test set (this is just twice as many of each outcome):

scoreA,scoreB

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,1

0,1

0,1

0,1

0,1

1,0

1,0

1,1

1,1

we get a lower probability that the results are due to chance:

Probability of same or better score due to chance: 0.64

5

	Decision procedures / policies
	Decision-theoretic parameter estimation
	Evaluation and visualization
	Bayesian vs. frequentist hypothesis testing
	Sample code

