
CSE 5523: Lecture Notes 6
Information Theory
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6.1 A Formal definition of information [Shannon, 1948]
We can formalize the contribution of learning as information.

In this sense, information about a distribution makes it more predictable.

For example, if you think a promotion is [.50, .50], then learn you got it, your distribution is [0, 1].

This is a bit of information: the difference between no knowledge and certainty of a Bernoulli trial.

They are the bits you’d use to optimally encode probability-weighted outcomes of a distribution.

For example, with a distribution [0.5, 0.25, 0.125, 0.125] the optimal encoding is not this:

event freq. code cost
A 500 00 500 × 2 = 1000 bits
B 250 01 250 × 2 = 500 bits
C 125 10 125 × 2 = 250 bits
D 125 11 125 × 2 = 250 bits

1000 2000 bits

but rather this, with variable length tokens, inversely proportional to the log of the probability:

event freq. code cost
A 500 0 500 × 1 = 500 bits
B 250 10 250 × 2 = 500 bits
C 125 110 125 × 3 = 375 bits
D 125 111 125 × 3 = 375 bits

1000 1750 bits

To encode 1000 outcomes, you use only 1750 bits instead of 2000!

If an event always happens, you give it zero bits – the receiver already knows the outcome.

If an event never happens, you don’t give it a code – you can’t send it, but you won’t need to.
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Formally, the information (in bits) of an event is the negative log of its probability:

Ip1,p2,...(x) = − log2 Pp1,p2,...(x)

If an event has probability 1, it has information 0 (use most efficient code imaginable: nothing!).

If an event has probability 0, it has information∞ (use least efficient code imaginable: everything!).

This is called self-information or surprisal. It’s the information of the event, given a distribution.

6.2 Entropy
The expected information of a distribution is then:

H(X) = H(Pp1,p2,...(X)) = Ex∼Pp1 ,p2 ,...(X) Ip1,p2,...(x)

= Ex∼Pp1 ,p2 ,...(X)(− log2 Pp1,p2,...(x)) definition of self-information

= −
∑
x∈X

Pp1,p2,...(x) log2 Pp1,p2,...(x) definition of expected value

This is also called the entropy (from Greek ‘entropia’ roughly meaning ‘disorder’ or ‘chaos’).

Indeed, expecting lots of information indicates chaos; expecting no information indicates order.

(Why abbreviate entropy as H? It’s a capital Greek eta η, pronounced ‘eh’, as in ‘eh’ntropy.)

And here’s the entropy of our promotion distribution, before and after finding out:

H([.5, .5]) = .5 · 1 + .5 · 1 = 1
H([0, 1]) = 0 · ∞ + 1 · 0 = 0

6.3 Cross entropy and Kullback-Leibler (KL) divergence
In defining loss functions for parameters, it’s useful to quantify how wrong a distribution Q is.

First, using distribution Q on data distributed according to P has the following information:

H(P,Q) = −Ex∼P(X) log2 Q(x)

= −
∑
x∈X

P(x) log2 Q(x) definition of expected value

(Here we assume P and Q share the same event space, but are not in the same probability space.)

This is called cross entropy.

Using a different distribution is always worse (optimality of maximum likelihood estimation).

The loss in expected information from using Q instead of P on data distributed according to P is:

DKL(P ||Q) = H(P,Q) − H(P)
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=

(
− Ex∼P(X) log2 Q(x)

)
−

(
− Ex∼P(X) log2 P(x)

)
definition of (cross) entropy

=

(
−

∑
x∈X

P(x) log2 Q(x)
)
−

(
−

∑
x∈X

P(x) log2 P(x)
)

definition of expected value

= −
∑
x∈X

P(x)
(

log2 Q(x) − log2 P(x)
)

distributive axiom

= −
∑
x∈X

P(x) log2
Q(x)
P(x)

addition of logs

This is called Kullback-Leibler (KL) divergence or relative entropy.

It’s zero (log of one) when the distributions match, and positive when they don’t.

6.4 Conditional entropy and mutual information
Sometimes it’s valuable to see how much information two variables share.

First, loss in expected information from using P(X) instead of P(X,Y) on distribution P(X,Y) is:

H(Y | X) = DKL(P(X,Y) ||P(X))

=

(
− Ex,y∼P(X,Y) log2 P(x)

)
−

(
− Ex,y∼P(X,Y) log2 P(x, y)

)
def. of KL divergence

=

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x)
)
−

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x, y)
)

def. of expected value

= −
∑

x,y∈X×Y

P(x, y)
(

log2 P(x) − log2 P(x, y)
)

distributive axiom

= −
∑

x,y∈X×Y

P(x, y) log2
P(x)

P(x, y)
addition of logs

=
∑

x,y∈X×Y

P(x, y) log2
P(x, y)
P(x)

log of inverse

=
∑

x,y∈X×Y

P(x, y) log2 P(y | x) addition of logs

(Here we assume P(X,Y) and P(X) are in the same probability space.)

This is called conditional entropy.

When P(X) is predictive of P(X,Y) (e.g. X and Y are correlated), this loss is small; otherwise big.

Loss in expected information from using P(X)·P(Y) instead of P(X,Y) on distribution P(X,Y) is:

I(X; Y) = DKL(P(X,Y) ||P(X)·P(Y))

=

(
− Ex,y∼P(X,Y) log2 P(x)·P(y)

)
−

(
− Ex,y∼P(X,Y) log2 P(x, y)

)
def. of KL divergence
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=

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x)·P(y)
)
−

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x, y)
)

def. of expected value

= −
∑

x,y∈X×Y

P(x, y)
(

log2 P(x)·P(y) − log2 P(x, y)
)

distributive axiom

= −
∑

x,y∈X×Y

P(x, y) log2
P(x)·P(y)

P(x, y)
addition of logs

= −
∑

x,y∈X×Y

P(x, y)
(

log2 P(x) + log2
P(y)

P(x, y)

)
addition of logs

=

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x)
)

+

(
−

∑
x,y∈X×Y

P(x, y) log2
P(y)

P(x, y)

)
distributive axiom

=

(
−

∑
x,y∈X×Y

P(x, y) log2 P(x)
)
−

(
−

∑
x,y∈X×Y

P(x, y) log2
P(x, y)
P(y)

)
log of inverse

=

(
−

∑
x∈X

P(x) log2 P(x)
)
−

(
−

∑
x,y∈X×Y

P(x, y) log2
P(x, y)
P(y)

)
marginalization

= H(X) − H(X |Y) def. of (conditional) entropy

This is called mutual information. Unlike conditional entropy, it is symmetric.

When X and Y are independent, it’s low; otherwise it’s high.

(Note this can differ from conditional entropy, e.g. if X is more fine-grained than Y .)
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