CSE 5523: Lecture Notes 8 Linear Algebra Notation

We'll use linear algebra notation to simplify our equations.

Contents

8.1	Terms
8.2	Unary Operations
8.3	Binary Operations
8.4	Representing factored probability models as matrix equations
8.5	Determinants and inversion
8.6	Vector Normalization
8.7	Cosine Similarity

8.1 Terms

We define matrices and vectors as arrays of real numbers:

1. s is a scalar iff $s \in \mathbb{R}$.

You will often see scalars written as italicized letters, or Greek letters, e.g.: γ , λ .

2. **v** is a **vector** iff $\mathbf{v} \in \mathbb{R}^I$. It can define a **point** in some *I*-dimensional space.

Scalars in vectors can be identified by one index: say
$$\mathbf{v} = \begin{bmatrix} 1.8 \\ -3 \end{bmatrix}$$
 then: $\mathbf{v}_{[2]} = -3$.

3. **M** is a **matrix** iff $\mathbf{M} \in \mathbb{R}^{I \times J}$. It can be a **linear transform** to project points between spaces.

Scalars in matrices can be identified by two indices: say
$$\mathbf{M} = \begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix}$$
 then: $\mathbf{M}_{[2,1]} = -3$.

1

8.2 Unary Operations

1. **transpose**: for all $\mathbf{M} \in \mathbb{R}^{I \times J}$, and all i, j indices to matrix rows and columns,

$$(\mathbf{M}^{\top})_{[i,j]} = \mathbf{M}_{[j,i]}.$$

For example:
$$\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1.8 & -3 \\ 12 & 40 \end{bmatrix}.$$

2. **diagonal**: for all $\mathbf{v} \in \mathbb{R}^I$, and all i indices to matrix rows and columns,

$$\operatorname{diag}(\mathbf{v})_{[i,j]} = \begin{cases} \mathbf{v}_{[i]} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}.$$

For example:
$$\operatorname{diag}\begin{pmatrix} 1.8 \\ -3 \end{pmatrix} = \begin{bmatrix} 1.8 & 0 \\ 0 & -3 \end{bmatrix}$$
.

3. **Kronecker delta**: for all *i*, *j* indices to matrix rows,

$$(\delta_i)_{[j]} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

For example:
$$\delta_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
.

8.3 Binary Operations

1. **scalar sum**: for all $s \in \mathbb{R}$, $\mathbf{M} \in \mathbb{R}^{I \times J}$, and all i, j indices to matrix rows and columns,

$$(s + \mathbf{M})_{[i,j]} = (\mathbf{M} + s)_{[i,j]} = s + \mathbf{M}_{[i,j]}$$

(commutative)

For example:
$$2 + \begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix} = \begin{bmatrix} 3.8 & 14 \\ -1 & 42 \end{bmatrix}$$

2. **matrix/vector sum**: for all $\mathbf{M}, \mathbf{N} \in \mathbb{R}^{I \times J}$, with row and column indices i, j,

$$(\mathbf{M} + \mathbf{N})_{[i,j]} = (\mathbf{N} + \mathbf{M})_{[i,j]} = \mathbf{M}_{[i,j]} + \mathbf{N}_{[i,j]}$$

(commutative)

For example:
$$\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2.8 & 14 \\ 0 & 44 \end{bmatrix}$$

3. **scalar product**: for all $s \in \mathbb{R}$, $\mathbf{M} \in \mathbb{R}^{I \times J}$, with row and column indices i, j,

$$(s\,\mathbf{M})_{[i,j]} = (\mathbf{M}\,s)_{[i,j]} = s\cdot\mathbf{M}_{[i,j]}$$

(commutative)

For example:
$$2\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix} = \begin{bmatrix} 3.6 & 24 \\ -6 & 80 \end{bmatrix}$$

4. **pointwise or Hadamard product**: for all $\mathbf{M}, \mathbf{N} \in \mathbb{R}^{I \times J}$, with row and column indices i, j,

2

$$(\mathbf{M} \odot \mathbf{N})_{[i,j]} = (\mathbf{N} \odot \mathbf{M})_{[i,j]} = \mathbf{M}_{[i,j]} \cdot \mathbf{N}_{[i,j]}$$

(commutative)

For example:
$$\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix} \odot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1.8 & 24 \\ -9 & 160 \end{bmatrix}$$

5. **vector product**: for all $\mathbf{M} \in \mathbb{R}^{I \times K}$, $\mathbf{N} \in \mathbb{R}^{K \times J}$, with indices i, j, k,

$$(\mathbf{M} \ \mathbf{N})_{[i,j]} = \sum_k \ \mathbf{M}_{[i,k]} \cdot \mathbf{N}_{[k,j]}$$

(not commutative)

There are two special cases of matrix multiplication for vectors:

(a) inner ('dot') product: for vectors $\mathbf{v}, \mathbf{u} \in \mathbb{R}^K$,

$$\mathbf{v}^{\mathsf{T}}\mathbf{u} = \sum_{k} \mathbf{v}_{[k]} \cdot \mathbf{u}_{[k]}$$

For example:

$$\begin{bmatrix} 1.8 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = (1.8 \cdot 1) + (-3 \cdot 2)$$
$$= -4.2$$

This **projects** a point onto a line (gives fraction of distance of nearest point from origin).

(b) **outer product**: for vectors $\mathbf{v} \in \mathbb{R}^I$, $\mathbf{u} \in \mathbb{R}^J$,

$$(\mathbf{v}\,\mathbf{u}^{\top})_{[i,j]} = \mathbf{v}_{[i]} \cdot \mathbf{u}_{[j]}$$

For example:

$$\begin{bmatrix} 1.8 \\ -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1.8 \cdot 1 & 1.8 \cdot 2 & 1.8 \cdot 3 \\ -3 \cdot 1 & -3 \cdot 2 & -3 \cdot 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1.8 & 3.6 & 5.4 \\ -3 & -6 & -9 \end{bmatrix}$$

6. **matrix product**: for all $\mathbf{M} \in \mathbb{R}^{I \times K}$, $\mathbf{N} \in \mathbb{R}^{K \times J}$, with indices i, j, k,

$$(\mathbf{M} \ \mathbf{N})_{[i,j]} = \sum_k \ \mathbf{M}_{[i,k]} \cdot \mathbf{N}_{[k,j]}$$

This is just a repeated inner or outer product.

(not commutative)

For example:

$$\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \\ 15 & -6 \\ 7 & 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} (1.8 \cdot 1) + (12 \cdot 4) & (1.8 \cdot 2) + (12 \cdot 5) & (1.8 \cdot 3) + (12 \cdot 6) \\ (-3 \cdot 1) + (40 \cdot 4) & (-3 \cdot 2) + (40 \cdot 5) & (-3 \cdot 3) + (40 \cdot 6) \\ (15 \cdot 1) + (-6 \cdot 4) & (15 \cdot 2) + (-6 \cdot 5) & (15 \cdot 3) + (-6 \cdot 6) \\ (7 \cdot 1) + (18 \cdot 4) & (7 \cdot 2) + (18 \cdot 5) & (7 \cdot 3) + (18 \cdot 6) \end{bmatrix}$$

$$= \begin{bmatrix} 49.8 & 63.6 & 77.4 \\ 157 & 194 & 231 \\ -9 & 0 & 9 \\ 79 & 104 & 129 \end{bmatrix}$$

It applies projections to points or other projections.

7. **Kronecker product**: for all $\mathbf{M} \in \mathbb{R}^{I \times J}$, $\mathbf{N} \in \mathbb{R}^{K \times L}$,

$$\mathbf{M} \otimes \mathbf{N} = \begin{bmatrix} \mathbf{M}_{[1,1]} \ \mathbf{N} & \cdots & \mathbf{M}_{[1,J]} \ \mathbf{N} \\ \vdots & \ddots & \vdots \\ \mathbf{M}_{[I,1]} \ \mathbf{N} & \cdots & \mathbf{M}_{[I,J]} \ \mathbf{N} \end{bmatrix}$$

For example:

$$\begin{bmatrix} 1.1 & 4 \\ -3 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1.1 \cdot 1 & 1.1 \cdot 2 & 1.1 \cdot 3 & 4 \cdot 1 & 4 \cdot 2 & 4 \cdot 3 \\ 1.1 \cdot 4 & 1.1 \cdot 5 & 1.1 \cdot 6 & 4 \cdot 4 & 4 \cdot 5 & 4 \cdot 6 \\ -3 \cdot 1 & -3 \cdot 2 & -3 \cdot 3 & 1 \cdot 1 & 1 \cdot 2 & 1 \cdot 3 \\ -3 \cdot 4 & -3 \cdot 5 & -3 \cdot 6 & 1 \cdot 4 & 1 \cdot 5 & 1 \cdot 6 \end{bmatrix}$$
$$= \begin{bmatrix} 1.1 & 2.2 & 3.3 & 4 & 8 & 12 \\ 4.4 & 5.5 & 6.6 & 16 & 20 & 24 \\ -3 & -6 & -9 & 1 & 2 & 3 \\ -12 & -15 & -18 & 4 & 5 & 6 \end{bmatrix}$$

This builds points or transforms as Cartesian products of other points or transforms.

8.4 Representing factored probability models as matrix equations

Factored probability estimation can be represented as a matrix equation.

For example, our Naive Bayes model:

$$\mathbf{f}^{\mathsf{T}} = \begin{pmatrix} \mathbf{g} & \mathbf{g} & \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g} & \mathbf{g} \\ \mathbf{g} & \mathbf{g}$$

$$P(F, c, s) = \mathbf{f}^{\mathsf{T}}(\mathbf{C} \ \delta_c \odot \mathbf{S} \ \delta_s)$$

Sample code in pandas:

```
import pandas
fT = pandas.read_csv('fT.csv')
C = pandas.read_csv('C.csv',index_col=0)
S = pandas.read_csv('S.csv',index_col=0)
print( fT @ (C['green'] * S['round']) )
Sample input file 'fT.csv':
apple, pear
.6,.4
Sample input file 'C.csv':
,red,green
apple,.67,.33
pear, 0, 1
Sample input file 'S.csv':
,round,long
apple,.8,.2
pear,.2,.8
```

Sample output:

0 0.2384
dtype: float64

8.5 Determinants and inversion

1. **determinant**: for all $\mathbf{M} \in \mathbb{R}^{I \times I}$, (Laplace expansion)

$$|\mathbf{M}| = \sum_{i=1}^{I} (-1)^{i+1} \mathbf{M}_{[1,i]} \begin{vmatrix} \mathbf{M}_{[2,1]} & \cdots & \mathbf{M}_{[2,i-1]} & \mathbf{M}_{[2,i+1]} & \cdots & \mathbf{M}_{[2,J]} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{M}_{[I,1]} & \cdots & \mathbf{M}_{[I,i-1]} & \mathbf{M}_{[I,i+1]} & \cdots & \mathbf{M}_{[I,J]} \end{vmatrix}$$

It is the volume (scaling factor) of the linear transformation defined by M.

It is also the volume of the parallelepiped spanned by the points in the matrix.

For example:
$$\begin{bmatrix} 1.8 & 12 \\ -3 & 40 \end{bmatrix} = (1.8 \cdot 40) - (12 \cdot -3) = 108.$$

2. **matrix inverse**: for all $\mathbf{M} \in \mathbb{R}^{I \times I}$ and $\mathbf{v} \in \mathbb{R}^{I}$,

$$\mathbf{v} = \mathbf{M}^{-1} \, \mathbf{M} \, \mathbf{v}.$$

For example:
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} .6 & -.7 \\ -.2 & .4 \end{bmatrix} \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

However, there is no inverse if the matrix is **singular**: $|\mathbf{M}| = 0$.

For example:
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a+b \\ a+b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
.

8.6 Vector Normalization

We can normalize these vectors using an n-norm of a vector \mathbf{v} :

$$||\mathbf{v}||_n = \left(\sum_j (\mathbf{v}_j)^n\right)^{\frac{1}{n}} \tag{1}$$

There are several useful instantiations of this:

1. The two-norm calculates the length of vector **v** as Euclidean coordinates:

$$\|\mathbf{v}\|_2 = \left(\sum_i (\mathbf{v}_i)^2\right)^{\frac{1}{2}} \tag{2}$$

$$= \left(\sum_{j} \mathbf{v}_{j} \cdot \mathbf{v}_{j}\right)^{\frac{1}{2}} \tag{3}$$

$$= \sqrt{\sum_{j} \mathbf{v}_{j} \cdot \mathbf{v}_{j}} \tag{4}$$

For example:
$$\left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|_2 = \sqrt{2}$$
 $\left\| \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\|_2 = \sqrt{3}$

2. The one-norm calculates 'Manhattan distance' (a sum over vector cells):

$$\|\mathbf{v}\|_1 = \left(\sum_j (\mathbf{v}_j)^1\right)^{\frac{1}{1}} \tag{5}$$

$$=\sum_{j}\mathbf{v}_{j}\tag{6}$$

For example:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2$$
 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3$

3. The infinity-('inf'-)norm calculates the maximum over vector cells (largest cell dominates):

$$\|\mathbf{v}\|_{\infty} = \left(\sum_{j} (\mathbf{v}_{j})^{\infty}\right)^{\frac{1}{\infty}} \tag{7}$$

$$= \max_{j} \mathbf{v}_{j} \tag{8}$$

For example:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \Big|_{\infty} = 1$$
 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Big|_{\infty} = 1$

Norms are useful, as the name suggests, for **normalizing** vectors (resizing them to unit length):

$$\frac{\begin{bmatrix} 1\\1\end{bmatrix}}{\left\| \begin{bmatrix} 1\\1\end{bmatrix} \right\|_{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

8.7 Cosine Similarity

The dot product of two vectors, after being normalized, is the coordinate of one projected orthogonally onto a (basis) axis defined by the other. The cosine is then the length of this projection (the 'adjacent edge') over one (the 'hypotenuse'):

$$\cos(\mathbf{v}, \mathbf{u}) = \frac{\mathbf{v}^{\top}}{\|\mathbf{v}\|_{2}} \frac{\mathbf{u}}{\|\mathbf{u}\|_{2}}$$

This makes a good similarity metric: it's one if v and u are aligned, zero if orthogonal:

$$\cos\begin{pmatrix}1\\1\end{pmatrix}, \begin{bmatrix}1\\1\end{pmatrix} = \begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{bmatrix} \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix} = 1$$

$$\cos\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{bmatrix} -1\\-1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix} = -1$$
$$\cos\begin{pmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix} = 0$$