CSE 5523: Lecture Notes 11 Dimensionality Reduction

Imagine we have the following data for nouns and verbs that precede them:

This is pretty sparse, e.g. no instances of orzo modified by buy.
We can generalize over limited data if we blur or 'smooth' it by removing dimensions of variance.

11.1 Center and scale

First we center and scale our data $\mathbf{X} \in \mathbb{R}^{N \times V}$:

$$
\begin{aligned}
\mathbf{X}^{\prime} & \stackrel{\text { def }}{=}(\mathbf{X}-\frac{\overbrace{\mathbf{1 1}^{\top} \mathbf{X}}^{N}}{N}) \\
\mathbf{X}^{(0)} \stackrel{\text { def }}{=} \mathbf{X}_{\text {diagonal of inverse standard deviations }}^{\left(\mathbf{X}^{\top} \mathbf{X}^{\prime} \odot \operatorname{diag}(\mathbf{1})\right)^{-\frac{1}{2}}} & \text { center } \\
& \text { scale by standard deviation }
\end{aligned}
$$

11.2 Best-fit line

Then we find a line $\mathbf{r}_{\mathbf{x}}^{(I)} \in \mathbb{R}^{V}$ capturing the most variance in centered data \mathbf{X}.
Start with random initial line $\mathbf{r}_{\mathbf{x}}^{(0)}$, then iteratively project it through variance $\mathbf{X}^{\top} \mathbf{X}$ and renormalize:

$$
\begin{equation*}
\mathbf{r}_{\mathbf{X}}^{(i)}=\frac{\mathbf{X}^{\top} \mathbf{X} \mathbf{r}_{\mathbf{X}}^{(i-1)}}{\left\|\mathbf{X}^{\top} \mathbf{X} \mathbf{r}_{\mathbf{X}}^{(i-1)}\right\|_{2}} \tag{1}
\end{equation*}
$$

(Weight all data points by similarity to $\mathbf{r}^{(i-1)}$, then average coordinates, then move to unit circle.) This proceeds until i converges $(i=I)$.

For example:

$$
\mathbf{X}=\mathbf{X}-\overbrace{\frac{\text { column means }}{\text { c.N }} \mathbf{X}}^{N}=\left[\begin{array}{ccc}
-1 & -.5 & -1 \\
0 & .5 & 0 \\
2 & 1.5 & 3 \\
-1 & -1.5 & -2
\end{array}\right] \quad \text { (centered) }
$$

$$
\mathbf{r}_{\mathbf{X}}^{(0)}=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]
$$

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{r}_{\mathbf{X}}^{(0)}=\left[\begin{array}{cccc}
-1 & 0 & 2 & -1 \\
-.5 & .5 & 1.5 & -1.5 \\
-1 & 0 & 3 & -2
\end{array}\right]\left[\begin{array}{ccc}
-1 & -.5 & -1 \\
0 & .5 & 0 \\
2 & 1.5 & 3 \\
-1 & -1.5 & -2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]=\left[\begin{array}{c}
\frac{20}{\sqrt{3}} \\
\frac{18}{\sqrt{3}} \\
\frac{31}{\sqrt{3}}
\end{array}\right]
$$

$$
\mathbf{r}_{\mathbf{X}}^{(1)}=\left[\begin{array}{l}
0.48722554 \\
0.43850298 \\
0.75519958
\end{array}\right]
$$

$$
\mathbf{r}_{\mathbf{x}}^{(2)}=\left[\begin{array}{l}
0.48765374 \\
0.43679415 \\
0.75591316
\end{array}\right]
$$

$$
\mathbf{r}_{\mathbf{X}}^{(3)}=\left[\begin{array}{c}
0.48767114 \\
0.4367649 \\
0.75591884
\end{array}\right]
$$

$$
\mathbf{r}_{\mathbf{X}}^{(4)}=\left[\begin{array}{l}
0.48767151 \\
0.43676433 \\
0.75591892
\end{array}\right]
$$

11.3 Principal Components Analysis

Next we collapse the space of the data along this line \mathbf{r} of greatest variance.
Done by projecting remaining variance $\mathbf{X}^{(\ell-1)}$ onto \mathbf{r}, then back using \mathbf{r}^{\top}, and subtracting from $\mathbf{X}^{(\ell-1)}$.
Each time we do this makes a simpler, lower-dimensional space $\mathbf{X}^{(\ell)}$ of the remaining variance:

$$
\begin{equation*}
\mathbf{X}^{(\ell)}=\mathbf{X}^{(\ell-1)}-\mathbf{X}^{(\ell-1)} \mathbf{r}_{\mathbf{X}^{(l-1)}}^{(I)} \mathbf{r}^{(I) \top} \mathbf{X}^{((-1)} \tag{2}
\end{equation*}
$$

We keep doing this until we have a set of L lines (principal components) that approximate the data.

For example:
$\mathbf{X}^{(0)}=\mathbf{X}-\frac{\mathbf{1}^{N \times N} \mathbf{X}}{N}=\left[\begin{array}{ccc}-1 & -.5 & -1 \\ 0 & .5 & 0 \\ 2 & 1.5 & 3 \\ -1 & -1.5 & -2\end{array}\right]$
$\mathrm{r}_{\mathrm{X}^{(0)}}^{(I)}=\left[\begin{array}{l}.49 \\ .44 \\ .76\end{array}\right]$
(centered)

Now let's add another component:
$\mathbf{X}^{(1)}=\left[\begin{array}{ccc}-0.2870376 & 0.13853747 & 0.10513275 \\ -0.10649876 & 0.40461846 & -0.16507921 \\ 0.0989363 & -0.20261489 & 0.05324187 \\ 0.29460005 & -0.34054104 & 0.00670458\end{array}\right]$

$\mathbf{r}_{\mathbf{X}^{(1)}}^{(I)}=\left[\begin{array}{c}-.56 \\ .82 \\ -.11\end{array}\right]$

Now we could add another component (but this wouldn't be reduced anymore):
$\mathbf{X}^{(2)}=\left[\begin{array}{ccc}-0.14021386 & -0.07691476 & 0.13489797 \\ 0.12318608 & 0.06757412 & -0.11851576 \\ -0.0284893 & -0.01562789 & 0.02740919 \\ 0.04551707 & 0.02496854 & -0.0437914\end{array}\right] \xrightarrow[x_{1}]{x_{1}}$
$\mathbf{r}_{\mathbf{X}^{(2)}}^{(I)}=\left[\begin{array}{c}.67 \\ .37 \\ -.64\end{array}\right]$

Now define a 'smoothed' matrix $\hat{\mathbf{X}}^{(0)} \in \mathbb{R}^{N \times V}$ by projecting $\mathbf{X}^{(0)}$ into this reduced space, then back:

$$
\hat{\mathbf{X}}^{(0)}=\underbrace{\mathbf{X}^{(0)}\left[\mathbf{r}^{(1)} \cdots \mathbf{r}^{(L)}\right]}_{\text {data points in } L \text {-space }}\left[\begin{array}{c}
\mathbf{r}^{(1) \top} \tag{3}\\
\vdots \\
\mathbf{r}^{(L) \top}
\end{array}\right]
$$

Then un-center it to get $\hat{\mathbf{X}}$ - a 'smoothed' version of \mathbf{X} :

$$
\begin{equation*}
\hat{\mathbf{X}}=\hat{\mathbf{X}}^{(0)}+\frac{\mathbf{1}^{N \times N} \mathbf{X}}{N} \tag{4}
\end{equation*}
$$

Here's what the reconstruction looks like using the first two principal components:

$$
\begin{aligned}
& \hat{\mathbf{X}}=\left[\begin{array}{ccc}
-1 & -.5 & -1 \\
0 & .5 & 0 \\
2 & 1.5 & 3 \\
-1 & -1.5 & -2
\end{array}\right]\left[\begin{array}{cc}
.49 & -.56 \\
.44 & .82 \\
.76 & -.11
\end{array}\right]\left[\begin{array}{ccc}
.49 & .44 & .76 \\
-.56 & .82 & -.11
\end{array}\right]+\left[\begin{array}{lll}
1 & 1.5 & 3 \\
1 & 1.5 & 3 \\
1 & 1.5 & 3 \\
1 & 1.5 & 3
\end{array}\right] \\
&=\begin{array}{r}
\text { oे } \\
\text { orzo } \\
\text { pene } \\
\text { ziti }
\end{array} \\
& \begin{array}{r}
\text { pici } \\
0.13 \\
0
\end{array}\left(\begin{array}{ccc}
\stackrel{\sim}{0} \\
0.87 & 1.07 & 1.85 \\
3.04 & 3.04 & 3.12 \\
-0.05 & -0.04 & 1.02 \\
\vdots & \vdots & \vdots
\end{array}\right)
\end{aligned}
$$

That solved our zero-count problem for orzo!
Not so much for pici though (it has negative counts!)... That's a problem with linear regression. We might fix this by not centering first, or by using other techniques, like neural nets (later)!

Reduced dimensionality vectors are also associated with words ('word embeddings').

- Data dimensionality V is very large, e.g. set of co-occurring words at various offset distances.
- Reduced dimensionality L is usually about 100 to 1000 .
- Dimensionality reduction uses recurrent neural networks.

11.4 Sample PCA code

Sample PCA code in pandas:

```
import sys
import numpy as np
import pandas as pd
```

```
X = pd.read_csv( sys.argv[1], index_col=0 )
N = len(X)
V = len(X.columns)
L = 2
    ## center and z-scale
Xc = X - ( pd.DataFrame( np.ones((N,N)), X.index, X.index ) @ X / N )
Xr = Xz = Xc @ pd.DataFrame( np.linalg.inv( Xc.T @ Xc * np.eye(V) ), X.columns, X.columns )
R = pd.DataFrame( np.random.rand(V,L), X.columns, range(L) ) ## random initial vectors
for l in range(L):
## each principal component
    for i in range(10):
        ## each epoch of best-fit
            R[l] = Xr.T @ Xr @ R[[l]] / np.linalg.norm( Xr.T @ Xr @ R[[l]] ) ## fit to variance
    Xr = Xr - Xr @ R[[l]] @ R[[l]].T ## remove dimension
Xze = Xz @ R @ R.T ## project to reduced space
Xce = Xze @ ( Xc.T @ Xc * np.eye(V) ) ## un-z-scale and un-center
Xe = Xce + pd.DataFrame( np.ones((N,N)), X.index, X.index ) @ X / N
print( Xe )
```

Sample input data file 'X.csv':

```
,buy,cook,eat
orzo,0,1,2
penne,1,2,3
ziti,3,3,6
pici,0,0,1
```

Output smoothed counts:

	buy	cook	eat
orzo	0.047038	1.018739	1.748499
penne	0.955731	1.982364	3.236695
ziti	3.013222	3.005267	5.929305
pici	-0.015991	-0.006371	1.085501

