CSE 5523: Lecture Notes 11
Dimensionality Reduction

Imagine we have the following data for nouns and verbs that precede them:

This is pretty sparse, e.g. no instances of modified by

We can generalize over limited data if we blur or ‘smooth’ it by removing dimensions of variance.

11.1 Center and scale

First we center and scale our data X € RV*V:

broadcasted means

117X

def

X ¢ x- t

(N) center
X0 € X' (XX o diag(1))"? scale by standard deviation

diagonal of inverse standard deviations

11.2 Best-fit line

Then we find a line rg) € RY capturing the most variance in centered data X.

Start with random initial line rgg), then iteratively project it through variance XX and renormalize:

(1)
W X"Xry
I'X = ﬁ (1)
IXTXry Il

(Weight all data points by similarity to r'"?, then average coordinates, then move to unit circle.)

This proceeds until i converges (i = I).

For example: | °
colimpmeans 11 -5 -1 |
11\"><Ar’ X 5 :

X=X- —~ - g 15 2 (centered) }
-1 -1.5 =2 |
- A3 |
r((”: i X2
" \lﬁ It X1
V3 o
-1 =5 -1y 20 o
-1 0 2 -1 : - ‘
XXrO<|-5 5 15 -15/|0 S Of L ||
S e | I N I R T A B :
‘ -1 -15 2|l 1 ¢
[0.48722554] ‘
rl)) =|0.43850298 |
0.75519958 |
[0.48765374] o
rly =|0.43679415 ‘ |
0.75591316 & |
~ [0.48767114] %
) = | 0.4367649 A X1
0.75591884] L
0.48767151]
rl) =|0.43676433 |
0.75591892 o

11.3 Principal Components Analysis

Next we collapse the space of the data along this line r of greatest variance.
Done by projecting remaining variance X~ onto r, then back using r and subtracting from X1,

Each time we do this makes a simpler, lower-dimensional space X© of the remaining variance:

0 _ (-1 DD (DT
X — x&D _ x()rx(f—l)rx(f—l) (2)

We keep doing this until we have a set of L lines (principal components) that approximate the data.

For example:

S
= & R
o 5 9
0rzo 0 1 2
_ penne 1 2 3
X="Zt| 3 36
pici 0 0 1 .
X2
-1 -5 -1 xl
1N X 0 5 L
O — — = ’ : [
X X N > 15 3 (centered) |
-1 -15 -2 }
49 °
I
roy, = |44
.76
Now let’s add another component:
[-0.2870376 0.13853747 0.10513275
X = —0.10649876 0.40461846 —0.16507921
~ | 0.0989363 —0.20261489 0.05324187 LS
| 0.29460005 —0.34054104 0.00670458 I
[—.56
1
ry), =| .82
.11

Now we could add another component (but this wouldn’t be reduced anymore):

[-0.14021386 —0.07691476 0.13489797
X = 0.12318608 0.06757412 —0.11851576 .
—-0.0284893 -0.01562789 0.02740919 2
| 0.04551707 0.02496854 —-0.0437914 X
[.67
l‘;é)z) =| .37
.64

Now define a ‘smoothed’ matrix X© € RV by projecting X© into this reduced space, then back:

T
KO — O [rm _ ~r(L)] : 3)
rOT
data points in L-space
Then un-center it to get X — a ‘smoothed’ version of X:
R R 1N><N X
X=X04 = 4)
N

Here’s what the reconstruction looks like using the first two principal components:

That solved our zero-count problem for !
Not so much for though (it has negative counts!). .. That’s a problem with linear regression.

We might fix this by not centering first, or by using other techniques, like neural nets (later)!

Reduced dimensionality vectors are also associated with words (‘word embeddings’).
e Data dimensionality V is very large, e.g. set of co-occurring words at various offset distances.
e Reduced dimensionality L is usually about 100 to 1000.

e Dimensionality reduction uses recurrent neural networks.

11.4 Sample PCA code

Sample PCA code in pandas:

import sys
import numpy as np
import pandas as pd

X = pd.read_csv(sys.argv[1l], index_col=0) ## read data
N = len(X)
V = len(X.columns)
L =2
center and z-scale
Xc = X - (pd.DataFrame(np.ones((N,N)), X.index, X.index) @ X / N)

Xr = Xz = Xc @ pd.DataFrame(np.linalg.inv(Xc.T @ Xc * np.eye(V)), X.columns, X.columns)

R = pd.DataFrame(np.random.rand(V,L), X.columns, range(L)) ## random initial vectors

for 1 in range(L): ## each principal component
for i in range(10): ## each epoch of best-fit
R[1] = Xr.T @ Xr @ R[[1]] / np.linalg.norm(Xr.T @ Xr @ R[[1]]) ## fit to variance

Xr = Xr - Xr @ R[[1]] @ R[[1]1].T ## remove dimension

Xze = Xz @R @R.T ## project to reduced space

Xce = Xze @ (Xc.T @ Xc * np.eye(V)) ## un-z-scale and un-center

Xe = Xce + pd.DataFrame(np.ones((N,N)), X.index, X.index) @ X / N

print(Xe)

Sample input data file ‘X.csv’:

,buy, cook, eat
orzo,0,1,2
penne,1,2,3
ziti,3,3,6
pici,0,0,1

Output smoothed counts:

buy cook eat
orzo 0.047038 1.018739 1.748499
penne 0.955731 1.982364 3.236695
ziti 3.013222 3.005267 5.929305
pici -0.015991 -0.006371 1.085501

