CSE 5523: Lecture Notes 15 Convolutional Neural Networks

Contents

15.1 Convolution 1
15.2 Jacobians for signals 2
15.3 Jacobians for filters 2
15.4 Multiple dimensions 3

Large networks often have a lot of parameters that do similar things, so can be tied (re-used).
One way to do this is by re-using whole blocks of neural units across a larger grid.

15.1 Convolution

The idea of re-using blocks of units at different places in a system comes from signal processing.
Often responses to a signal f are defined by a filter function g that adds up when impulses repeat:

$$
(f * g)(i)=\int_{-\infty}^{\infty} f(j) g(i-j) d j
$$

(It's subtracted because the filter function tapers to the left so the response tapers to the right.) This is called convolution.

The same principle can apply to discrete vectors $f(\ldots) \in \mathbb{R}^{J}, g(\ldots) \in \mathbb{R}^{J-I}$ as signals and filters:

$$
(f(\ldots) * g(\ldots))_{[i]}=\sum_{j=i}^{i+J-I} f(\ldots)_{[j]} g(\ldots)_{[1+j-i]}
$$

Note that $i-j$ is non-positive, so we invert the filter and use $1+j-i$.
For example if $I=4$ and $J=6$:

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] *\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \cdot 2+1 \cdot 3+1 \cdot 1=4 \\
1 \cdot 2+1 \cdot 3+0 \cdot 1=5 \\
1 \cdot 2+0 \cdot 3+0 \cdot 1=2 \\
0 \cdot 2+0 \cdot 3+0 \cdot 1=0
\end{array}\right]
$$

15.2 Jacobians for signals

We can define Jacobians for backprop into signals (z is a weight downstream from $f(\ldots)$):

$$
\begin{aligned}
& \frac{\partial(f(\ldots) * g(\ldots))_{[i]}}{\partial z}=\frac{\partial}{\partial z} \sum_{j=i}^{i+J-I} g(\ldots)_{[1+j-i]} f(\ldots)_{[j]} \\
&=\sum_{j=i}^{i+J-I} \frac{\partial}{\partial z} g(\ldots)_{[1+j-i]} f(\ldots)_{[j]} \quad \text { definition of convolution } \\
&=\sum_{j=i}^{i+J-I} g(\ldots)_{[1+j-i]} \frac{\partial}{\partial z} f(\ldots)_{[j]} \\
&=\left(\sum_{j=1}^{J} \delta_{j}^{\top}\left\{\begin{array}{ll}
g(\ldots)_{[1+j-i]} & \text { if } 0 \leq j-i \leq J-I \\
0 & \text { otherwise }
\end{array}\right) \frac{\partial}{\partial z} f(\ldots) \quad\right. \text { sum rule } \\
& \text { So }\left(\sum_{i=1}^{I} \sum_{j=1}^{J} \delta_{i} \delta_{j}^{\top}\left\{\begin{array}{ll}
g(\ldots)_{[1+j-i]} & \text { if } 0 \leq j-i \leq J-I \\
0 & \text { otherwise }
\end{array}\right)=\frac{\partial(f(\ldots) * g(\ldots))}{\partial f(\ldots)}\right. \text { is a Jacobian. }
\end{aligned}
$$

For example if $I=4$ and $J=6$:

$$
\frac{\partial(f(\ldots) * g(\ldots))}{\partial f(\ldots)}=\left[\begin{array}{cccccc}
g(\ldots)_{[1]} & g(\ldots)_{[2]} & g(\ldots)_{[3]} & 0 & 0 & 0 \\
0 & g(\ldots)_{[1]} & g(\ldots)_{[2]} & g(\ldots)_{[3]} & 0 & 0 \\
0 & 0 & g(\ldots)_{[1]} & g(\ldots)_{[2]} & g(\ldots)_{[3]} & 0 \\
0 & 0 & 0 & g(\ldots)_{[1]} & g(\ldots)_{[2]} & g(\ldots)_{[3]}
\end{array}\right]
$$

15.3 Jacobians for filters

We can also define Jacobians for backprop into filters (z is a weight downstream from $g(\ldots)$):

$$
\begin{array}{rlr}
\frac{\partial(f(\ldots) * g(\ldots))_{[i]}}{\partial z} & =\frac{\partial}{\partial z} \sum_{j=i}^{i+J-I} g(\ldots)_{[1+j-i]} f(\ldots)_{[j]} & \text { definition of convolution } \\
& =\frac{\partial}{\partial z} \sum_{k=1}^{1+J-I} g(\ldots)_{[k]} f(\ldots)_{[k+i-1]} & \text { change of variable } k=1+j-i \\
& =\sum_{k=1}^{1+J-I} \frac{\partial}{\partial z} g(\ldots)_{[k]} f(\ldots)_{[k+i-1]} & \text { sum rule } \\
& =\sum_{k=1}^{1+J-I} f(\ldots)_{[k+i-1]} \frac{\partial}{\partial z} g(\ldots)_{[k]} \\
& =\left(\sum_{k=1}^{1+J-I} \delta_{k}^{\top}\left\{\begin{array}{ll}
f(\ldots)_{[k+i-1]} & \text { if } 1 \leq k+i-1 \leq J \\
0 & \text { otherwise }
\end{array}\right) \frac{\partial}{\partial z} g(\ldots) \quad\right. \text { product rule }
\end{array}
$$

$\operatorname{So}\left(\sum_{i=1}^{I} \sum_{k=1}^{1+J-I} \delta_{i} \delta_{k}^{\top}\left\{\begin{array}{ll}f(\ldots)_{[k+i-1]} & \text { if } 1 \leq k+i-1 \leq J \\ 0 & \text { otherwise }\end{array}\right)=\frac{\partial(f(\ldots) * g(\ldots))}{\partial g(\ldots)}\right.$ is a Jacobian.
For example if $I=4$ and $J=6$:

$$
\frac{\partial(f(\ldots) * g(\ldots))}{\partial g(\ldots)}=\left[\begin{array}{lll}
f(\ldots)_{[1]} & f(\ldots)_{[2]} & f(\ldots)_{[3]} \\
f(\ldots)_{[2]} & f(\ldots)_{[3]} & f(\ldots)_{[4]} \\
f(\ldots)_{[3]} & f(\ldots)_{[4]} & f(\ldots)_{[5]} \\
f(\ldots)_{[4]} & f(\ldots)_{[5]} & f(\ldots)_{[6]}
\end{array}\right]
$$

With these Jacobians we can backprop error to either operand of a convolution.

15.4 Multiple dimensions

Data for images and other multi-dimensional data can be flattened with modified convolution.
For example to convolve a 2×2 pattern around a 3×3 image (so, with $I=4$ and $J=9$:

$$
\frac{\partial(f(\ldots) * \mathbf{W})}{\partial f(\ldots)}=\left[\begin{array}{ccccccccc}
\mathbf{W}_{[1,1]} & \mathbf{W}_{[1,2]} & 0 & \mathbf{W}_{[2,1]} & \mathbf{W}_{[2,2]} & 0 & 0 & 0 & 0 \\
0 & \mathbf{W}_{[1,1]} & \mathbf{W}_{[1,2]} & 0 & \mathbf{W}_{[2,1]} & \mathbf{W}_{[2,2]} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbf{W}_{[1,1]} & \mathbf{W}_{[1,2]} & 0 & \mathbf{W}_{[2,1]} & \mathbf{W}_{[2,2]} & 0 \\
0 & 0 & 0 & 0 & \mathbf{W}_{[1,1]} & \mathbf{W}_{[1,2]} & 0 & \mathbf{W}_{[2,1]} & \mathbf{W}_{[2,2]}
\end{array}\right]
$$

