
CSE 5523: Lecture Notes 15
Convolutional Neural Networks

Contents
15.1 Convolution . 1
15.2 Jacobians for signals . 2
15.3 Jacobians for filters . 2
15.4 Multiple dimensions . 3

Large networks often have a lot of parameters that do similar things, so can be tied (re-used).

One way to do this is by re-using whole blocks of neural units across a larger grid.

15.1 Convolution
The idea of re-using blocks of units at different places in a system comes from signal processing.

Often responses to a signal f are defined by a filter function g that adds up when impulses repeat:

(f ∗ g)(i) =

∫ ∞

−∞

f (j) g(i − j) d j

(It’s subtracted because the filter function tapers to the left so the response tapers to the right.)

This is called convolution.

The same principle can apply to discrete vectors f (...) ∈ RJ, g(...) ∈ RJ−I as signals and filters:

(f (...) ∗ g(...))[i] =

i+J−I∑
j=i

f (...)[j] g(...)[1+ j−i]

Note that i− j is non-positive, so we invert the filter and use 1+ j−i.

For example if I = 4 and J = 6:

0
1
1
0
0
0

∗

231
 =

0 · 2 + 1 · 3 + 1 · 1 = 4
1 · 2 + 1 · 3 + 0 · 1 = 5
1 · 2 + 0 · 3 + 0 · 1 = 2
0 · 2 + 0 · 3 + 0 · 1 = 0

1

15.2 Jacobians for signals
We can define Jacobians for backprop into signals (z is a weight downstream from f (...)):

∂(f (...) ∗ g(...))[i]

∂z
=
∂

∂z

i+J−I∑
j=i

g(...)[1+ j−i] f (...)[j] definition of convolution

=

i+J−I∑
j=i

∂

∂z
g(...)[1+ j−i] f (...)[j] sum rule

=

i+J−I∑
j=i

g(...)[1+ j−i]
∂

∂z
f (...)[j] product rule

=

 J∑
j=1

δ>j

g(...)[1+ j−i] if 0 ≤ j−i ≤ J−I
0 otherwise

 ∂∂z
f (...) def. of inner product

So

 I∑
i=1

J∑
j=1

δi δ
>
j

g(...)[1+ j−i] if 0 ≤ j−i ≤ J−I
0 otherwise

 =
∂(f (...) ∗ g(...))

∂ f (...)
is a Jacobian.

For example if I = 4 and J = 6:

∂(f (...) ∗ g(...))
∂ f (...)

=

g(...)[1] g(...)[2] g(...)[3] 0 0 0

0 g(...)[1] g(...)[2] g(...)[3] 0 0
0 0 g(...)[1] g(...)[2] g(...)[3] 0
0 0 0 g(...)[1] g(...)[2] g(...)[3]

15.3 Jacobians for filters
We can also define Jacobians for backprop into filters (z is a weight downstream from g(...)):

∂(f (...) ∗ g(...))[i]

∂z
=
∂

∂z

i+J−I∑
j=i

g(...)[1+ j−i] f (...)[j] definition of convolution

=
∂

∂z

1+J−I∑
k=1

g(...)[k] f (...)[k+i−1] change of variable k = 1+ j−i

=

1+J−I∑
k=1

∂

∂z
g(...)[k] f (...)[k+i−1] sum rule

=

1+J−I∑
k=1

f (...)[k+i−1]
∂

∂z
g(...)[k] product rule

=

1+J−I∑
k=1

δ>k

 f (...)[k+i−1] if 1 ≤ k+i−1 ≤ J
0 otherwise

 ∂∂z
g(...) def. of inner product

2

So

 I∑
i=1

1+J−I∑
k=1

δi δ
>
k

 f (...)[k+i−1] if 1 ≤ k+i−1 ≤ J
0 otherwise

 =
∂(f (...) ∗ g(...))

∂g(...)
is a Jacobian.

For example if I = 4 and J = 6:

∂(f (...) ∗ g(...))
∂g(...)

=

f (...)[1] f (...)[2] f (...)[3]

f (...)[2] f (...)[3] f (...)[4]

f (...)[3] f (...)[4] f (...)[5]

f (...)[4] f (...)[5] f (...)[6]

With these Jacobians we can backprop error to either operand of a convolution.

15.4 Multiple dimensions
Data for images and other multi-dimensional data can be flattened with modified convolution.

For example to convolve a 2 × 2 pattern around a 3 × 3 image (so, with I = 4 and J = 9:

∂(f (...) ∗W)
∂ f (...)

=

W[1,1] W[1,2] 0 W[2,1] W[2,2] 0 0 0 0

0 W[1,1] W[1,2] 0 W[2,1] W[2,2] 0 0 0
0 0 0 W[1,1] W[1,2] 0 W[2,1] W[2,2] 0
0 0 0 0 W[1,1] W[1,2] 0 W[2,1] W[2,2]

3

	Convolution
	Jacobians for signals
	Jacobians for filters
	Multiple dimensions

