CSE 5523: Lecture Notes 15
Convolutional Neural Networks
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Large networks often have a lot of parameters that do similar things, so can be tied (re-used).

One way to do this is by re-using whole blocks of neural units across a larger grid.

15.1 Convolution
The idea of re-using blocks of units at different places in a system comes from signal processing.

Often responses to a signal f are defined by a filter function g that adds up when impulses repeat:
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(It’s subtracted because the filter function tapers to the left so the response tapers to the right.)

This is called convolution.

The same principle can apply to discrete vectors f(...) € R’, g(...) € R’ as signals and filters:
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Note that i—j is non-positive, so we invert the filter and use 1+ j—i.

For example if and



15.2 Jacobians for signals
We can define Jacobians for backprop into signals (z is a weight downstream from f7(...)):
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For example if and

15.3 Jacobians for filters

We can also define Jacobians for backprop into filters (z is a weight downstream from g(...)):
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With these Jacobians we can backprop error to either operand of a convolution.

15.4 Multiple dimensions
Data for images and other multi-dimensional data can be flattened with modified convolution.

For example to convolve a 2 X 2 pattern around a 3 X 3 image (so, with and
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