
CSE 5523: Lecture Notes 16
Recurrent Neural Networks

Contents
16.1 Simple Recurrent Networks [Elman, 1991] . 1
16.2 Long Short-Term Memory [Hochreiter and Schmidhuber, 1997] 1

Neural networks can be defined to predict hidden states of sequential input.

These networks are recursive, and of potentially unbounded depth, so they re-use models.

16.1 Simple Recurrent Networks [Elman, 1991]
A simple recurrent network defines a hidden state vector ht at each time step t:

ht
def
= logistic

(
WH

[
ht−1

xt

])
and defines an output vector yt based on its hidden state vector:

yt
def
= logistic(WY ht)

Here logistic is a multinomial logistic function on x ∈ RD with D units:

logistic(x) =
1

1 + exp(−x)

x

y

Importantly, the weight matrixes WH and WY do not depend on the time step.

This is called stationarity.

16.2 Long Short-Term Memory [Hochreiter and Schmidhuber, 1997]
Recurrent networks can lose information through backprop (vanishing and exploding gradients).

This can be mitigated using ‘cell’ memories which are stored and retrieved using learned ‘gates’.

LSTMs maintain a hidden state ht and a memory cell ct at each time step t.

1

The cell retains input, if it’s judged to be important:

ct
def
= tanh

(
G

[
ht−1

xt

])
︸ ︷︷ ︸
gate to reformat input

� logistic
(
I
[
ht−1

xt

])
︸ ︷︷ ︸
gate to store new content

+ logistic
(
F

[
ht−1

xt

])
︸ ︷︷ ︸
gate to forget old content

� ct−1

The hidden state controls the output (which may be connected to a higher layer):

ht
def
= tanh(ct) � logistic

(
O

[
ht−1

xt

])
︸ ︷︷ ︸

gate to output from cell

Here tanh is a hyperbolic tangent function, also on x ∈ RD with D units:

tanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

=
exp(x) + exp(x) − exp(x) − exp(−x)

exp(x) + exp(−x)
add exp(x) − exp(x)

= 2
exp(x)

exp(x) + exp(−x)
− 1 multiplicative inverse

= 2
exp(2x)

exp(2x) + 1
− 1 multiply first term by exp(x)

= 2 logistic(2x) − 1 definition of logistic

(it’s essentially just a re-scaled logistic).

x

y

We can efficiently apply the gates by stacking them up


F
G
I
O

 before multiplying with
[
ht−1

x

]
.

References
[Elman, 1991] Elman, J. L. (1991). Distributed representations, simple recurrent networks, and

grammatical structure. Machine Learning, 7:195–225.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.

2

	Simple Recurrent Networks elman91
	Long Short-Term Memory hochreiterschmidhuber97

