CSE 5523: Lecture Notes 16 Recurrent Neural Networks

Contents

16.1 Simple Recurrent Networks [Elman, 1991]]. 1
16.2 Long Short-Term Memory [Hochreiter and Schmidhuber, 1997] 1

Neural networks can be defined to predict hidden states of sequential input.
These networks are recursive, and of potentially unbounded depth, so they re-use models.

16.1 Simple Recurrent Networks [Elman, 1991]

A simple recurrent network defines a hidden state vector \mathbf{h}_{t} at each time step t :

$$
\mathbf{h}_{t} \stackrel{\text { def }}{=} \operatorname{logistic}\left(\mathbf{W}_{H}\left[\begin{array}{c}
\mathbf{h}_{t-1} \\
\mathbf{x}_{t}
\end{array}\right]\right)
$$

and defines an output vector \mathbf{y}_{t} based on its hidden state vector:

$$
\mathbf{y}_{t} \stackrel{\text { def }}{=} \operatorname{logistic}\left(\mathbf{W}_{Y} \mathbf{h}_{t}\right)
$$

Here logistic is a multinomial logistic function on $\mathbf{x} \in \mathbb{R}^{D}$ with D units:

$$
\operatorname{logistic}(\mathbf{x})=\frac{\mathbf{1}}{1+\exp (-\mathbf{x})}
$$

Importantly, the weight matrixes \mathbf{W}_{H} and \mathbf{W}_{Y} do not depend on the time step.
This is called stationarity.

16.2 Long Short-Term Memory [Hochreiter and Schmidhuber, 1997]

Recurrent networks can lose information through backprop (vanishing and exploding gradients). This can be mitigated using 'cell' memories which are stored and retrieved using learned 'gates'.

LSTMs maintain a hidden state \mathbf{h}_{t} and a memory cell \mathbf{c}_{t} at each time step t.

The cell retains input, if it's judged to be important:

$$
\mathbf{c}_{t} \stackrel{\text { def }}{=} \underbrace{\tanh \left(\mathbf{G}\left[\begin{array}{c}
\mathbf{h}_{t-1} \\
\mathbf{x}_{t}
\end{array}\right]\right)}_{\text {gate to reformat input }} \odot \underbrace{\operatorname{logistic}\left(\mathbf{I}\left[\begin{array}{c}
\mathbf{h}_{t-1} \\
\mathbf{x}_{t}
\end{array}\right]\right)}_{\text {gate to store new content }}+\underbrace{\operatorname{logistic}\left(\mathbf{F}\left[\begin{array}{c}
\mathbf{h}_{t-1} \\
\mathbf{x}_{t}
\end{array}\right]\right)}_{\text {gate to forget old content }} \odot \mathbf{c}_{t-1}
$$

The hidden state controls the output (which may be connected to a higher layer):

$$
\mathbf{h}_{t} \stackrel{\text { def }}{=} \tanh \left(\mathbf{c}_{t}\right) \odot \underbrace{\operatorname{logistic}\left(\mathbf{O}\left[\begin{array}{c}
\mathbf{h}_{t-1} \\
\mathbf{x}_{t}
\end{array}\right]\right)}_{\text {gate to output from cell }}
$$

Here tanh is a hyperbolic tangent function, also on $\mathbf{x} \in \mathbb{R}^{D}$ with D units:

$$
\begin{array}{rlr}
\tanh (\mathbf{x}) & =\frac{\exp (\mathbf{x})-\exp (-\mathbf{x})}{\exp (\mathbf{x})+\exp (-\mathbf{x})} \\
& =\frac{\exp (\mathbf{x})+\exp (\mathbf{x})-\exp (\mathbf{x})-\exp (-\mathbf{x})}{\exp (\mathbf{x})+\exp (-\mathbf{x})} & \\
& =2 \frac{\exp (\mathbf{x})}{\exp (\mathbf{x})+\exp (-\mathbf{x})}-\mathbf{1} & \text { add } \exp (\mathbf{x})-\exp (\mathbf{x}) \\
& =2 \frac{\exp (2 \mathbf{x})}{\exp (2 \mathbf{x})+\mathbf{1}}-\mathbf{1} & \text { multiplicative inverse } \\
& =2 \operatorname{logistic}(2 \mathbf{x})-\mathbf{1} & \text { multiply first term by } \exp (\mathbf{x})
\end{array}
$$

(it's essentially just a re-scaled logistic).

We can efficiently apply the gates by stacking them up $\left[\begin{array}{c}\mathbf{F} \\ \mathbf{G} \\ \mathbf{I} \\ \mathbf{O}\end{array}\right]$ before multiplying with $\left[\begin{array}{c}\mathbf{h}_{t-1} \\ \mathbf{x}\end{array}\right]$.

References

[Elman, 1991] Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7:195-225.
[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735-1780.

