
CSE 5523: Lecture Notes 16
Recurrent Neural Networks
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Neural networks can be defined to predict hidden states of sequential input.

These networks are recursive, and of potentially unbounded depth, so they re-use models.

16.1 Simple Recurrent Networks [Elman, 1991]
A simple recurrent network defines a hidden state vector ht at each time step t:

ht
def
= logistic

(
WH

[
ht−1

xt

])
and defines an output vector yt based on its hidden state vector:

yt
def
= logistic(WY ht)

Here logistic is a multinomial logistic function on x ∈ RD with D units:

logistic( x ) =
1

1 + exp(−x )

x

y

Importantly, the weight matrixes WH and WY do not depend on the time step.

This is called stationarity.

16.2 Long Short-Term Memory [Hochreiter and Schmidhuber, 1997]
Recurrent networks can lose information through backprop (vanishing and exploding gradients).

This can be mitigated using ‘cell’ memories which are stored and retrieved using learned ‘gates’.

LSTMs maintain a hidden state ht and a memory cell ct at each time step t.
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The cell retains input, if it’s judged to be important:

ct
def
= tanh

(
G

[
ht−1

xt

])
︸             ︷︷             ︸
gate to reformat input

� logistic
(
I
[
ht−1

xt

])
︸               ︷︷               ︸
gate to store new content

+ logistic
(
F

[
ht−1

xt

])
︸                ︷︷                ︸
gate to forget old content

� ct−1

The hidden state controls the output (which may be connected to a higher layer):

ht
def
= tanh(ct) � logistic

(
O

[
ht−1

xt

])
︸                 ︷︷                 ︸

gate to output from cell

Here tanh is a hyperbolic tangent function, also on x ∈ RD with D units:

tanh( x ) =
exp( x ) − exp(−x )
exp( x ) + exp(−x )

=
exp( x ) + exp( x ) − exp( x ) − exp(−x )

exp( x ) + exp(−x )
add exp( x ) − exp( x )

= 2
exp( x )

exp( x ) + exp(−x )
− 1 multiplicative inverse

= 2
exp( 2x )

exp( 2x ) + 1
− 1 multiply first term by exp( x )

= 2 logistic( 2x ) − 1 definition of logistic

(it’s essentially just a re-scaled logistic).

x

y

We can efficiently apply the gates by stacking them up


F
G
I
O

 before multiplying with
[
ht−1

x

]
.
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