CSE 5523: Lecture Notes 19
Support Vector Machines
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We can define complex separators with a closed-form-ish solution (but it doesn’t scale well).

19.1 Support Vector Machines

We want to find a line w, b that separates the data by 1 ‘unit’ (which is just scaled into w and b):
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And we want that separation ‘unit’ to be maximal (i.e. to have minimal rescaling by w):
distance by which to divide ‘unit’
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We also want to be able to express this only in terms of our training data, to allow richer models.

We model separation as extra arbitrarily awful cost @, for each example violating the constraint.
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(Arbitrary awfulcy keeps us above the constraint when perpendicular to arbitrarily steep gradients.)

These awful «,,’s are called Lagrange multipliers. The function with them in it is a Lagrangian.

Now we differentiate the Lagrangian to optimize w (slope of cost is zero at minimum w):

0= aw[v > ||w||2 Zanyn (W, +b) + Za,,




Z(W[m]) - Z @y (W'X, + D) + Z ay def. of 2-norm

aw[v] 2
6WM Z( W)™ — W[] Z @ Yo (WX, + b) + Gw[v] Z a, sum rule
= ; W 3 ( M) Z Wi ——a, y, (WX, + D) + Z W[v] sum rule
= Wi — Zn: Xy Vn 0W[v] (W'x, + b) product rule
= Wi — Zﬂ: Xy Vn (%MWTX,, + a‘im b) sum rule
= W[,] — Z @y Yn (Xn)p product rule
0=w- Znan Vo Xy apply to all v
W= Z oznnyn X, subtract Z Ay Vi Xy

and to optimize b (slope of cost is zero at minimum b):
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This lets us reformulate the Lagrangian entirely in terms of our training data:
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This is called the Lagrangian dual. It is expressed entirely in the space of N inputs.

add like terms

apply opt. of b

We still have constraints, specifically that the a’s be non-negative, but solvers exist for this.

These constraints fit the form of quadratic programming optimizers, so we use those to find «’s.

The solver wants a matrix for our dual, indexed by n and m above, called a Hessian:

H = diag(y) X" X diag(y)

The resulting « vector will be mostly zero with a few positive values, called support vectors.

Support vectors are those points closest to the separator, which serve to define the separator.

Once we have the optimum «’s, we can plug them in to get weights w, using the equation above:
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Then we choose any item x,, on the support vector, say that with the highest Lagrangian value:

n = argmax @

and use it to define b:

19.2 Sample code

Sample SVM code using cvxopt solver:

import sys

import numpy

import pandas

import cvxopt
cvxopt.solvers.options[’show_progress’] = False

YX = pandas.read_csv( sys.argv[1l] ) ## read data
N = len(YX)
y = YX[YX.columns[0]].to_frame() ## transform data



X = YX[YX.columns[1:]]
H = (numpy.diagflat(y.values) @ X @ X.T @ numpy.diagflat(y.values)).values ## Hessian
a = numpy.array( cvxopt.solvers.gp( cvxopt.matrix( H, tc=’d’ ),

cvxopt.matrix( -numpy.ones((N,1)) ),

cvxopt.matrix( -numpy.eye(N) ),

cvxopt.matrix( numpy.zeros(N) ),

cvxopt.matrix( y.T.values, tc="d’ ),

cvxopt.matrix( numpy.zeros(1l) )OI’x’] )
w=X.T @ (y*a) ## weights are points averaged by Lagrangians
n = numpy.argmax( a * y ) ## find a support vector x_n
b= (.T[n] - w.T @ (X.T)[n] ## bias is difference between value and estimate of x_n
yhat = numpy.sign( X @ w + numpy.ones((N,1)) * b.values ) ## estimate including bias
print( yhat ) ## print estimate

Run on simple dataset with three support vectors (the last three points):

It correctly produces a separator:

19.3 Kernel functions

We can also make ‘weightless’ SVM'’s, with no weight vector, to allow wigglier separators:

inner prod.
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inner prod.
Inner products in these models can be replaced with functions on vectors, called kernel functions.
E.g. the radial basis function (RBF) kernel uses distances to support vectors as coordinates:
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So the inner products in the Hessian, bias and expectation equations can be replaced with:

(Z OmK (X, x’))

Also, since non-support vectors have zero «, they can be ignored here and in y to save time.

19.4 Sample ‘weightless’ code

Sample SVM code with no weight vector (NOTE: this does not use the kernel function):

import sys

import numpy

import pandas

import cvxopt
cvxopt.solvers.options[’show_progress’] = False

YX = pandas.read_csv( sys.argv[1l] ) ## read data
N = len(YX)
y = YX[YX.columns[®]].to_frame() ## transform data
X = YX[YX.columns[1:]]
H = (numpy.diagflat(y.values) @ X @ X.T @ numpy.diagflat(y.values)).values ## Hessian
a = numpy.array( cvxopt.solvers.qp( cvxopt.matrix( H, tc=’d’ ),
cvxopt.matrix( -numpy.ones((N,1)) ),
cvxopt.matrix( -numpy.eye(N) ),
cvxopt.matrix( numpy.zeros(N) ),
cvxopt.matrix( y.T.values, tc="d’ ),
cvxopt.matrix( numpy.zeros(1l) )D)I’x’] )
n = numpy.argmax( a * y ) ## find a support vector x_n
b= ((.T[n] - (a*y).T @ X @ (X.T)[n] ## bias is difference between value and estimate of x_n

yhat = numpy.sign( X @ X.T @ (a*y) + numpy.ones((N,1)) * b.values ) ## estimate

print( yhat ) ## print estimate

On the same input:

This produces the same result:



19.5 Slack variables

We can also make the SVM less brittle by introducing a ‘slack’ variable &, for each data point:
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