CSE 5523: Lecture Notes 22
Expectation maximization
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Sometimes we have unlabeled data and want to divide it into classes that statistically explain it.
For example, heights and weights of animals on a farm can be explained using a set of species.

Message passing can help discover classes that maximize posterior probability of unlabeled data.

22.1 Expectation maximization [Dempster et al., 1977]
Optimizing parameters M and missing data labels X isn’t closed-form or gradient solvable.

But, we can start with random M©’s and iterate solving for X*’s, then M"’s, then XV)’s, etc.

Assume N training examples, each with V variables X, ,, only some of which are observed.

(And remember C, are conditioned-on variables, f, , and b, ,, are forward and backward messages.)

Randomly initialize distributions for random variables X, over |X,| values for [y ., |X,| cases:
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Then for several iterations i, calculate expected distributions (x,(;i) over each hidden variable X, :
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This is called an expectation step or E step.

Then calculate the maximum a posteriori estimate of the model Mﬁ’ ) for each variable X,:
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and normalize so rows sum to one. Tied or stationary models are summed over all tied instances.

This is called a maximization step or M step.

This algorithm is called expectation maximization (EM).

It is guaranteed to converge on a local maximum: both E and M step decrease KL divergence.

22.2 Sample EM code

Here’s example code where one of K ‘topics’ is chosen for each of N W-word documents.

This fits parameters and hidden variable values for the following plate diagram:
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(NOTE: here each backward message b, x 7 is a product of backward messages from X’s to Z.)

import sys
import numpy as np
import pandas as pd

## read data

## number of documents
## doc length in words
## vocab of word types
## number of topics

## initialize models

X = pd.read_csv( sys.argv[l], sep=" ')

N = len(X)

W = len(X.columns)

V = np.unique(X)

K =2

M_Z = pd.DataFrame( np.random.dirichlet( np.ones( K ) ) ).T

M_X = pd.DataFrame( np.random.dirichlet( np.ones( len(V) ), K ), columns=V )
xT = {}

for n in range(N):
for w in X:

xT[n,w] = pd.DataFrame( np.zeros((1,len(V))), columns=V )

XxTn,w][ X[wl[n] 1 +=1

for i in range(3):

b_XZ = [ np.multiply.reduce( [ M_X @ xT[n,w].T for w in X ] )

for n in range(N) ]

zT = {}

for n in range(N):

d = M_Z @ pd.DataFrame( np.diagflat(b_XZ[n]), index=range(K),
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## word Kronecker deltas
## for each document

## for each word token
## one-hots w. std cols
## for each EM iter

## backward messages

## E step, update vars
## for each document

columns=range(K) )



zT[n] =d / (d @ np.ones((K,K)) )

M_Z pd.DataFrame( np.add.reduce( [ zT[n]/N for n in range(N) ] ), ## M step, update mdls
columns=range (K) )

M_X = pd.DataFrame( np.add.reduce( [ zT[n].T @ xT[n,w] for n in range(N) for w in X ] ),
columns=V )

MX=MX/ (MX @ pd.DataFrame( np.ones((len(V),len(V))), index=V, columns=V ) )

print( M_Z )

print( M_X )

Run on simple set of ‘documents’, each with three words:

It correctly identifies word distributions for the different topics:

22.3 Continuous observations (Gaussian mixture model)

EM can also model continuous downstream observations (e.g. mixtures of Gaussians):
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Here each observation X, is drawn from a mixture Z, of K different Gaussian components.

In this case the backward message still contains a likelihood of child values for each parent value:

(bn,X,Z)[k] = N,uk,(rk(-xn)

and the M step still sets the model’s parameters weighted by the forward message:
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22.4 Evaluation of unsupervised models
Unsupervised models produce arbitrarily labeled ‘clusters’ (estimates for categorical variables).
We typically evaluate these against human-labeled ‘classes’ using information-theoretic measures:

conditional entropy of predicting classes from clusters
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entropy of predicting classes

Homogeneity(z,2) = 1 —

conditional entropy of predicting clusters from classes
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2 Homogeneity(z, ) Completeness(z, 2)

Completeness(z,2) = 1 —

V-measure(z, 2) = .
@2) Homogeneity(z, z) + Completeness(z, 2)

It’s the log of the accuracy we’d get if we trained a statistical classifier on some held-out data.

But how can we calculate significance for these aggregate measures using permutation testing?

These can be permutation tested by accounting per-instance ‘heterogeneity’ and ‘incompleteness’:
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PIH(m, z1.n,21.8) =

Pll(n,z1 n,21.8) =

These are then summed over the set of items in each permutation, and subtracted from one.
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