CSE 5523: Lecture Notes 22 Expectation maximization

Contents

22.1	Expectation maximization [Dempster et al., 1977]
22.2	Sample EM code
22.3	Continuous observations (Gaussian mixture model)
22.4	Evaluation of unsupervised models

Sometimes we have unlabeled data and want to divide it into classes that statistically explain it. For example, heights and weights of animals on a farm can be explained using a set of species. Message passing can help discover classes that maximize posterior probability of unlabeled data.

22.1 Expectation maximization [Dempster et al., 1977]

Optimizing parameters \mathbf{M} and missing data labels X isn't closed-form or gradient solvable. But, we can start with random $\mathbf{M}^{(0)}$'s and iterate solving for $X^{(0)}$'s, then $\mathbf{M}^{(1)}$'s, etc.

Assume *N* training examples, each with *V* variables $X_{n,v}$, only some of which are observed. (And remember C_v are conditioned-on variables, $\mathbf{f}_{v,u}$ and $\mathbf{b}_{v,w}$ are forward and backward messages.)

Randomly initialize distributions for random variables X_{ν} over $|X_{\nu}|$ values for $\prod_{X_u \in C_{\nu}} |X_u|$ cases:

$$\mathbf{M}_{v}^{(0)} \sim \text{Dirichlet}(\mathbf{1}^{(\prod_{X_u \in C_v} |X_u|) \times |X_v|})$$

Then for several iterations *i*, calculate **expected** distributions $(\mathbf{x}_{n,\nu}^{(i)})^{\top}$ over each hidden variable X_{ν} :

$$\left(\mathbf{x}_{n,v}^{(i)}\right)^{\mathsf{T}} = \left(\bigotimes_{X_u \in C_v} \left(\mathbf{f}_{n,u,v}^{(i)}\right)^{\mathsf{T}}\right) \mathbf{M}_v^{(i-1)} \underbrace{\bullet}_{w|X_v \in C_w} \operatorname{diag}(\mathbf{b}_{n,w,v}^{(i)})$$

joint of conditioned-on variables

This is called an **expectation step** or **E step**.

Then calculate the **maximum** a posteriori estimate of the model $\mathbf{M}_{v}^{(i)}$ for each variable X_{v} :

$$\mathbf{M}_{v}^{(i)} = \sum_{n} \left(\bigotimes_{X_{u} \in C_{v}} \mathbf{x}_{n,u}^{(i)} \right) \left(\mathbf{x}_{n,v}^{(i)} \right)^{\mathsf{T}}$$

and normalize so rows sum to one. Tied or stationary models are summed over all tied instances.

This is called a **maximization step** or **M step**.

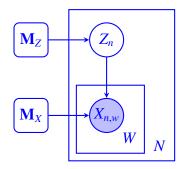
This algorithm is called **expectation maximization (EM)**.

It is guaranteed to converge on a *local* maximum: both E and M step decrease KL divergence.

22.2 Sample EM code

Here's example code where one of K 'topics' is chosen for each of N W-word documents.

This fits parameters and hidden variable values for the following plate diagram:



(NOTE: here each backward message $\mathbf{b}_{n,X,Z}$ is a *product* of backward messages from X's to Z.)

```
import sys
import numpy as np
import pandas as pd
X = pd.read_csv( sys.argv[1], sep=' ')
                                                                       ## read data
N = len(X)
                                                                       ## number of documents
W = len(X.columns)
                                                                       ## doc length in words
V = np.unique(X)
                                                                       ## vocab of word types
K = 2
                                                                       ## number of topics
M_Z = pd.DataFrame( np.random.dirichlet( np.ones( K ) ) ).T
                                                                       ## initialize models
M_X = pd.DataFrame( np.random.dirichlet( np.ones( len(V) ), K ), columns=V )
xT = \{\}
                                                                       ## word Kronecker deltas
for n in range(N):
                                                                       ## for each document
                                                                       ## for each word token
  for w in X:
    xT[n,w] = pd.DataFrame( np.zeros((1,len(V))), columns=V )
    xT[n,w][X[w][n]] += 1
                                                                       ## one-hots w. std cols
for i in range(3):
                                                                       ## for each EM iter
  b_XZ = [ np.multiply.reduce( [ M_X @ xT[n,w].T for w in X ] )
                                                                       ## backward messages
           for n in range(N) ]
  zT = \{\}
                                                                       ## E step, update vars
  for n in range(N):
                                                                       ## for each document
    d = M_Z @ pd.DataFrame( np.diagflat(b_XZ[n]), index=range(K), columns=range(K) )
```

Run on simple set of 'documents', each with three words:

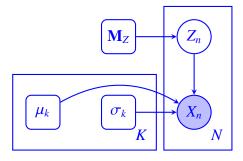
```
x1 x2 x3
a b a
c b c
b a a
```

It correctly identifies word distributions for the different topics:

```
0 1
0 0.666667 0.333333
a b c
0 6.666667e-01 0.333333 1.517833e-09
1 5.677142e-08 0.333333 6.666666e-01
```

22.3 Continuous observations (Gaussian mixture model)

EM can also model continuous downstream observations (e.g. mixtures of Gaussians):



Here each observation X_n is drawn from a mixture Z_n of K different Gaussian components.

In this case the backward message still contains a likelihood of child values for each parent value:

$$(\mathbf{b}_{n,X,Z})_{[k]} = \mathcal{N}_{\mu_k,\sigma_k}(x_n)$$

and the M step still sets the model's parameters weighted by the forward message:

$$\mu_k = \frac{1}{N} \sum_n (\mathbf{x}_{n,Z})_{[k]} x_n$$

$$\sigma_k = \frac{1}{N} \sum_n (\mathbf{x}_{n,Z})_{[k]} (x_n - \mu_k)^2$$

22.4 Evaluation of unsupervised models

Unsupervised models produce arbitrarily labeled 'clusters' (estimates for categorical variables).

We typically evaluate these against human-labeled 'classes' using information-theoretic measures:

Homogeneity(z,\hat{z}) = 1 - $\frac{H(z\mid\hat{z})}{H(z)}$ = 1 - $\frac{\sum_{c}\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(z=c,\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(z=c\mid\hat{z}=k)}{\sum_{c}P_{z_{1..N},\hat{z}_{1..N}}(z=c)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(z=c)}$ entropy of predicting classes conditional entropy of predicting clusters from classes $\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k,z=c)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k\mid z=c)$ $\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k,z=c)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k\mid z=c)$ entropy of predicting clusters from classes $\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k,z=c)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k\mid z=c)$ entropy of predicting clusters $\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)$ entropy of predicting clusters $\sum_{k}\widehat{P}_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{1..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{2..N}}(\hat{z}=k)\log_{2}P_{z_{1..N},\hat{z}_{$

It's the log of the accuracy we'd get if we trained a statistical classifier on some held-out data.

But how can we calculate significance for these aggregate measures using permutation testing?

These can be permutation tested by accounting per-instance 'heterogeneity' and 'incompleteness':

$$\mathsf{PIH}(n, z_{1..N}, \hat{z}_{1..N}) = \frac{\log_2 \mathsf{P}_{z_{1..N}, \hat{z}_{1..N}}(z_n \,|\, \hat{z}_n)}{\sum_{n'} \log_2 \mathsf{P}_{z_{1..N}, \hat{z}_{1..N}}(z_{n'} \,|\, \hat{z}_{n'})}$$
$$\mathsf{PII}(n, z_{1..N}, \hat{z}_{1..N}) = \frac{\log_2 \mathsf{P}_{z_{1..N}, \hat{z}_{1..N}}(\hat{z}_n \,|\, z_n)}{\sum_{n'} \log_2 \mathsf{P}_{z_{1..N}, \hat{z}_{1..N}}(\hat{z}_{n'} \,|\, z_{n'})}$$

These are then summed over the set of items in each permutation, and subtracted from one.

References

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society*, 39 (Series B):1–38.