LING5702: Lecture Notes 1 Introduction and Background

Contents

1.1	What is this course about?	1
1.2	Background: some math notation (in case you don't know)	2
	Background: probability and probability spaces [Kolmogorov, 1933]	

1.1 What is this course about?

This course will cover fundamental questions about what language is.

This course differs from other *psychology* courses because:

- it covers *language*.
- it involves a lot of *formal* (i.e. mathematical) modeling—language is inherently formal!

This course differs from other *linguistics* courses because:

- it focuses on linguistic 'performance' rather than linguistic 'competence' [Chomsky, 1965].
 - competence: mental representations of linguistic knowledge (rules to combine signs)
 - performance: how language is actually used (regularities in how speech errors happen)
- it models phenomena at an 'algorithmic' rather than 'computational' level [Marr, 1982].
 - computational/functional: model the task a behavior does, e.g. find spoken phrases.
 - algorithmic/representational: model processes/structures behaviors use, e.g. memory.
 - implementational: model physical implementation of behaviors, e.g. neural firing.

The course therefore covers some of the same material as other linguistic courses, but differently.

The course is organized into three parts:

- 1. background (what we will assume about how the brain works):
 - neural firing, mental states, cued associations, complex ideas
- 2. the processes of language:
 - **decoding** complex signs into complex ideas
 - identifying words and phrases and associating them with meanings
 - encoding complex ideas into complex signs
 - turning meanings back into words and phrases

- 3. acquisition (how babies learn language):
 - learning speech sounds
 - learning words and meanings
 - learning to encode and decode complex ideas

1.2 Background: some math notation (in case you don't know)

Set notation, involving sets *S*, *S*' and entities $x, x', x'', x_1, x_2, x_3, \ldots$:

pair	$\langle x_1, x_2 \rangle$		
tuple	$\langle x_1, x_2, x_3, \ldots \rangle$		
set	$S = \{x \mid\}$ e.g. $\{x_1, x_2, x_3\}$		
empty/null set	Ø or {}		
element	$x \in S$ e.g. $x_2 \in \{x_1, x_2\}, x_3 \notin \{x_1, x_2\}$		
subset (or equal)	$S \subset S'$ e.g. $\{x_1, x_2\} \subset \{x_1, x_2, x_3\}, \{x_1, x_2\} \subseteq \{x_1, x_2\}$		
union	$S \cup S'$ e.g. $\{x_1, x_2\} \cup \{x_2, x_3\} = \{x_1, x_2, x_3\}$		
intersection	$S \cap S'$ e.g. $\{x_1, x_2\} \cap \{x_2, x_3\} = \{x_2\}$		
exclusion or complementation	$S - S'$ e.g. $\{x_1, x_2\} - \{x_2, x_3\} = \{x_1\}$		
Cartesian product	$S \times S'$ e.g. $\{x_1, x_2\} \times \{x_3, x_4\} = \{\langle x_1, x_3 \rangle, \langle x_1, x_4 \rangle, \langle x_2, x_3 \rangle, \langle x_2, x_4 \rangle\}$		
power set	$\mathcal{P}(S)$ or 2^S e.g. $\mathcal{P}(\{x_1, x_2\}) = \{\emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}\}$		
relation	$R \subseteq S \times S' = \{ \langle x, x' \rangle \mid \} \text{ e.g. } R = \{ \langle x_1, x_3 \rangle, \langle x_2, x_3 \rangle, \langle x_2, x_4 \rangle \}$		
function	$F: S \to S' \subseteq S \times S'$ s.t. if $\langle x, x' \rangle, \langle x, x'' \rangle \in F$ then $x' = x''$		
cardinality	S = number of elements in S		
real numbers	\mathbb{R} : the uncountably infinite set of real numbers		
real ranges	\mathbb{R}^n_m : the real numbers between <i>m</i> and <i>n</i> (inclusive)		
real tuples	\mathbb{R}^n : the uncountably infinite set of <i>n</i> -tuples of reals		

First-order logic notation, involving **propositions** p, p' – e.g. that 1<2 (true) or 1=2 (false):

conjunction	$p \land p'$ or p, p' e.g. $1 < 2 \land 2 < 3$ or $1 < 2, 2 < 3$: both p and p'			
disjunction	$p \lor p'$ e.g. $1 < 2 \lor 1 > 2$: either p or p'			
negation	$\neg p \text{ or } '/' \text{ e.g. } \neg 1=2 \text{ or } 1\neq 2 : \text{ not } p$			
implication	$p \to p'$ (equivalent to $\neg p \lor p'$) e.g. 3 is prime \to 3 is odd			
existential quantifier	$\exists_{x \in S} \dots x \dots$: disjunction over all x of proposition $\dots x \dots$			
universal quantifier	$\forall_{x \in S} \dots x \dots$: conjunction over all x of proposition $\dots x \dots$			

Limit notation, involving sets *S* and entities *x*:

limit union	$\bigcup_{x\in S}\ldots x\ldots$:	union over all x of set $\ldots x \ldots$
limit intersection	$\bigcap_{x\in S}\ldots x\ldots$:	intersection over all x of set $\ldots x \ldots$
limit sum	$\sum_{x\in S}\ldots x\ldots$:	sum over all x of number $\dots x \dots$
limit product	$\prod_{x\in S}\ldots x\ldots$:	product over all x of number $\dots x \dots$
limit	$\lim_{x\to\infty}\ldots x\ldots$:	limit as x tends to infinity of number $\ldots x \ldots$

1.3 Background: probability and probability spaces [Kolmogorov, 1933]

Probability is defined over a measure space $\langle O, \mathcal{E}, \mathsf{P} \rangle$ where the measure P (probability) sums to one. This **probability measure space** $\langle O, \mathcal{E}, \mathsf{P} \rangle$ consists of:

- 1. a sample space *O* a non-empty set of outcomes (e.g. the numbers on a die);
- 2. an event space ('sigma-algebra') $\mathcal{E} \subseteq 2^{O}$ a set of events in the power set of *O* such that:
 - (a) \mathcal{E} contains $O: O \in \mathcal{E}$ (e.g. the event of rolling *any* number: {1, 2, 3, 4, 5, 6} is in \mathcal{E}),
 - (b) \mathcal{E} is closed under complementation: $\forall_{A \in \mathcal{E}} \ O A \in \mathcal{E}$ (e.g. rolling no number: \emptyset is in \mathcal{E}),
 - (c) \mathcal{E} is closed under countable union: $\forall_{A_1..A_\infty \in \mathcal{E}} \bigcup_{i=1}^{\infty} A_i \in \mathcal{E}$ (if $\{1, 2\}$ and $\{3\}$ then $\{1, 2, 3\}$)
 - (this set of events will be the **domain** of our probability function things with probability);
- 3. a **probability measure** $P : \mathcal{E} \to \mathbb{R}_0^{\infty}$ a function from events to non-negative reals such that:
 - (a) the P measure is countably additive: $\forall_{A_1..A_\infty \in \mathcal{E} \text{ s.t. } \forall_{i,j} A_i \cap A_j = \emptyset} \mathsf{P}(\bigcup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mathsf{P}(A_i),$
 - (b) the P measure of entire space is one: P(O) = 1 (e.g. P(rolling any number) = 1).

This characterization is helpful because it unifies probability spaces that may seem very different:

1. **discrete** spaces – e.g. a coin:

$$\langle \underbrace{\{H,T\}}_{\mathcal{O}}, \underbrace{\{\emptyset,\{H\},\{T\},\{H,T\}\}}_{\mathcal{E}}, \underbrace{\{\langle\emptyset,0\rangle,\langle\{H\},.5\rangle,\langle\{T\},.5\rangle,\langle\{H,T\},1\rangle\}}_{\mathsf{P}}\rangle$$

2. continuous spaces – e.g. a dart (here $2^{\mathbb{R}^2}$ is a Borel algebra: a set of all open subsets of \mathbb{R}^2):

$$\langle \underbrace{\mathbb{R}^2}_{O}, \underbrace{2^{\mathbb{R}^2}}_{\mathcal{E}}, \underbrace{\{\langle R, p \rangle \mid R \in 2^{\mathbb{R}^2}, p = \iint_{A \in R} \mathcal{N}_{0,1}(x_A, y_A) \, dA\}}_{\mathsf{P}} \rangle$$

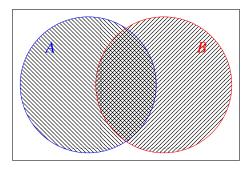
(events must be open sets/ranges of outcomes because point outcomes have zero probability)

3. joint spaces using Cartesian products of sample spaces – e.g. two coins ({H, T} × {H, T}): $\langle \underbrace{\{HH, HT, TH, TT\}}_{O}, \underbrace{\{\emptyset, \{HH\}, \dots, \{HH, HT, TH, TT\}\}}_{\mathcal{E}}, \underbrace{\{\langle\emptyset, 0\rangle, \langle\{HH\}, .25\rangle, \dots, \langle\{HH, HT, TH, TT\}, 1\rangle\}}_{P} \rangle$

This axiomatization entails, for any events $A, B \in \mathcal{E}$ (e.g. rolling an even number or less than 4):

1.
$$P(A) \in \mathbb{R}^1_0$$

2. $\mathsf{P}(A \cup B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(A \cap B)$

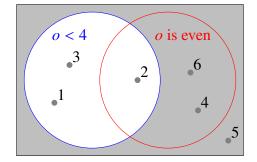


Though probabilities are defined over sets of outcomes, we often write them using **propositions**. For example, if $O = X \times Y$ (say, flipping a coin and rolling a die) and therefore $\forall_{o \in O} o = \langle x_o, y_o \rangle$:

 $P(x) = P(X=x) = P(\{o \mid o \in O \land x_o = x\})$ (allow any value for y_o component) $P(x \land y) = P(X=x \land Y=y) = P(\{o \mid o \in O \land x_o = x \land y_o = y\})$ $P(\neg x) = P(X\neq x) = P(\{o \mid o \in O \land x_o \neq x\})$

Random variables *D* are functions from outcomes x_o , y_o to **values** (e.g. distance of point to origin). Often we simply use the Cartesian factors of a joint sample space (*X*, *Y*) as random variables.

We can also define **conditional probabilities** as ratios of these measures: $P(S | R) = \frac{P(R \cap S)}{P(R)}$. (It's the probability of the joint or intersection $R \cap S$ over the probability of the condition R.) For example, if we have a fair die roll, then $P(o \text{ is even } | o < 4) = \frac{P(o \text{ is even } \land o < 4)}{P(o < 4)} = \frac{1}{3}$:



Practice 1.1:

Using variables X and Y for two coin flips, each with outcomes H and T, write a probability equation expressing that a quarter of the time the first coin will come up heads and the second coin will come up tails.

Practice 1.2:

Assuming two fair coins are tossed, each with a .5 probability of a heads outcome and a .5 probability of a tails outcome, what is the probability that at least one coin will come up heads?

References

- [Chomsky, 1965] Chomsky, N. (1965). *Aspects of the Theory of Syntax*. Cambridge, Mass.: MIT Press.
- [Kolmogorov, 1933] Kolmogorov, A. N. (1933). *Grundbegriffe der Wahrscheinlichkeitsrechnung*. Berlin: Springer. Second English Edition, *Foundations of Probability* 1950, published by Chelsea, New York.
- [Marr, 1982] Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company.