
LING5702: Lecture Notes 3
A Model of Neural Activation

Previous lectures described formal models of complex ideas.

The next few lectures will discuss how these can be represented as cued associations in the brain.
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Many psycholinguistic models are defined in terms of neural networks:

• language happens in the brain (brain damage→ language damage)

• the brain is composed of neurons

• activation among neurons is associated with linguistic behavior (ERP, FMRI)

3.1 Biology of neural activation
Neurons look like trees, with roots, trunks, and branches. A neuron has:

• dendrites: ‘roots’ near other neurons to receive chemical signals

• an axon: a ‘trunk’ along which the neuron propagates electric potential

• axon terminals: ‘branches’ near other neurons to send chemical signals

It also has:

• synapses: gaps betw. terminals and dendrites that permit thresholding

• neurotransmitters: chemicals that carry signals across synapses
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• vesicles: bubbles in axon terminals that contain neurotransmitters

• receptors: attachment sites for neurotransmitters on dendrites
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Neurons transmit signals or ‘fire’ by suddenly changing electric potential:

1. start with more K+ but much fewer Na+ ions than outside, creating membrane potential;

2. (dendrites) receptors receive neurotransmitters, open ligand-gated channels;

3. (dendrites) ligand-gated channels let Ca++/Cl− in or K+ out, changing potential

(this is a linear function on the sum of pos/neg ions in the neuron);

4. (axon) if potential changes enough, voltage-gated channels come open;

5. (axon) voltage-gated channels let in many Na+/Ca++ ions; neuron depolarizes

(this is a non-linear threshold function on the sum of positive/negative ions in the neuron);

6. (axon terminals) depolarization allows vesicles to meet surface, release neurotransmitters;

7. depolarization makes voltage-gated channels let out K+, repolarize cell;

8. ion pumps on surface put back Ca++,Cl−,Na+,K+, neurotransmitters.

Synaptic connections may be positive or negative, e.g.:

1. pyramidal neurons may emit neurotransmitters that gate positive ions

2. interneurons may emit neurotransmitters that gate negative ions

Synaptic connections also have weights:

1. repeated firing removes Mg blockers, so the ‘rest state’ depolarizes a bit

2. fewer Mg blockers increases phosphate, makes receptors more efficient

3. fewer Mg blockers triggers construction of more receptors (to let in more ions)
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3.2 A simple model of neural activation [Mcculloch & Pitts, 1943]
The linear function and threshold function can modeled mathematically:

1. ai, a j: real-valued activation of artificial neural units i and j

2. wi, j: real-valued weight (pos/neg) of connection from unit i to unit j

3.
∑

i ai · wi, j: connection-weighted (linear) sum of impinging neural units

4. σ: sigmoid (S-shaped) threshold function, e.g. logistic: σ(x) = 1
1+e−x

a j = σ

∑
i

ai · wi, j


For example, if neuron 2 impinges on neuron 4 (neurons 1 and 3 not shown):

neuron 2 a2
neuron 4∑

i ai · wi,4

a1 · w1,4

a2 · w2,4

a3 · w3,4

σ(
∑

i ai·wi,4)

σ(
∑

i ai ·wi,4)

σ(
∑

i ai ·wi,4)

σ(
∑

i ai ·wi,4)

Individual neurons don’t have real-valued activation; they fire all-or-none if they reach threshold.

Neural models like this may therefore be more similar to clusters of neurons.

Neurons in the cortex seem to be organized into columnar clusters:

• neurons in the same cluster seem to fire together

• clusters may have real-valued (or at least graded) activation

3.3 Distributed representation of concepts/referents [Horton & Adams, 2005]
Do individual clusters correspond to concepts/referents (‘localist’ model)? Inconsistent w. plasticity.

Activation for concepts/referents may be instead distributed over clusters

3



• mental states for concepts or referents are characterized by patterns of activation, e.g.:

‘airplane’ ‘celery’ ‘my house’
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← neuron/cluster closest to center of motor cortex

← neuron/cluster second closest to center of motor cortex

← neuron/cluster third closest to center of motor cortex

...

← neuron/cluster closest to center of auditory cortex

← neuron/cluster second closest to center of auditory cortex

...

• maybe 20,000 clusters in human cortex: 20,000-dimensional space; room for many ideas!

(in contrast, physical space has only 3 dimensions: L×W×H, color space has 3: R×G×B)

• mental states for concepts are locations/regions/coordinates in this space (‘vector-space’)

• there’s no actual limit on the number of states/concepts/referents, just potential for confusability

• if sparsely encoded (many units inactive), we can have mixture states of several referents at once!

3.4 Models of activation over time [Elman, 1991]
Over time (e.g. during sentence processing), the activation of neurons/clusters changes.

These changes can be modeled with Recurrent Neural Networks:

sensory units context vector

• the model is defined in terms of a ‘context’ vector of neural units, as shown above;

• activation of the context vector defines a mental state, as noted above;

• the context vector is connected to sensory units (observations);
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• the context vector is also connected to itself at previous time step, forming a circuit;

• the model learns to transition between states by associating each previous and current state

(these associations are determined by synaptic weights, as we’ll see later);

• the learned transitions define a sequence of mental states for any sequence of observations.

Here’s what it looks like unrolled through time:

t = 1ms t = 2ms t = 3ms

We will assume this kind of transition model, with transitions defined by synaptic weights.

Experiments with these models have shown learning of syntax:

• word order predictions

• number agreement

3.5 Mental states composed of features [Howard & Kahana, 2002]
Mental states for concepts are distributed over the cortex in different brain areas:

• visual cortex (posterior)

• auditory cortex (medial, bilateral)

• motor cortex (medial, dorsal)

Mental states therefore have various features: visual, auditory, proprioceptive, ...

• features may be encoded by several neuron or cluster units (boxes in the vectors)

Working memory may be modeled with temporal features:

• temporal feature values change over time

• recurrent learning builds associations between present and past contexts
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• recent past events easily cued from current temporal features (STM)

• distant past events cued not so easily, need other features (LTM)
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