
LING5702: Lecture Notes 4
A Model of Associative Memory

The next few lectures will define a reference model to try to explain language:

1. We will model associative memory as relations between states of cortical activation.

2. We will model ideas as collections of cued associations in associative memory.

3. We will model language as a process of encoding, transmitting, and decoding ideas.

This first lecture is on associative memory.
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4.1 Mental states as patterns of neural activation
Mental states (e.g. from looking at pictures) are associated with active firing of characteristic pat-
terns of neurons [Mitchell et al., 2008].

Activation of neurons in the cortex can be modeled with vectors of firing rates for neurons or clusters:

.58

.0

.58

.0

.0

.58

.0

← neuron/cluster #1, say, closest to center of motor cortex

← neuron/cluster #2, second closest to center of motor cortex

← neuron/cluster #3, third closest to center of motor cortex

...

← neuron/cluster #5, say, closest to center of auditory cortex

← neuron/cluster #6, second closest to center of auditory cortex

...

(The values are typically ‘normalized’ so that the point is always one unit away from the origin.)
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This kind of model is called ‘distributed’ because the activation is distributed around the cortex.

Individual elements of vectors (or characteristic subsets of elements) are called features.

An n-length vector may also be read as the coordinates of a point in an n-dimensional space.

4.2 Cued associations as connectivity weights between neurons/clusters
Mental states can be used as cues to other associated target mental states.

These associations happen by long-term potentiation (sensitization) of synapses between pre-
synaptic and post-synaptic neurons that are active in the cue and target states, respectively.

cue target

c[1] t[1]

c[2] t[2]

c[3] t[3]

W[1,1]W[2,1]W[3,1] W[1,2]

W[2,2]W[3,2]

W[1,3]

W[2,3]

W[3,3]

Synaptic weights can be shown in matrices, with a row for each target and a column for each cue:

W[1,1] W[1,2] W[1,3]

W[2,1] W[2,2] W[2,3]

W[3,1] W[3,2] W[3,3]

Potentiation can then be modeled using matrices of connections for each pair of neurons/clusters
in cue and target patterns (specifically it’s an outer product of cue and target vectors, with
the cue on the right) [Marr, 1971, Anderson et al., 1977, Murdock, 1982, Smolensky, 1990,
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McClelland et al., 1995, Howard & Kahana, 2002]:

synaptic weights (cue:columns; target:rows)︷                                                 ︸︸                                                 ︷
.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

=

target︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

cue︷                                                 ︸︸                                                 ︷

.0 .50 .50 .0 .50 .0 .50

This is just a matrix product: the value at row i, column j of the result is the sum of the product of
each element in row i of the first factor M ∈ RI×K (the target) with the corresponding element in
column j of the second N ∈ RK×J (the cue):

(M N)[i, j] =

K∑
k=1

M[i,k] · N[k, j]

The target may then be obtained by applying the association weights to the cue (matrix product):

target︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

=

synaptic weights (cue:columns; target:rows)︷                                                 ︸︸                                                 ︷
.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

cue︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

To compute the activation of each post-synaptic neuron (row) in the target vector, the activation
of each of the pre-synaptic neurons in the cue is multiplied by the synaptic weight in the memory
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matrix for that pre-synaptic neuron (column) synapsing with that post-synaptic neuron (row). The
contributions of each pre-synaptic neuron are weighted by the corresponding synaptic weight and
added together. So, to compute the top element of the target, the four .50’s of the 2nd, 3rd, 5th and
7th elements of the cue are multiplied by .29, .29, .29 and .29, respectively (the 2nd, 3rd, 5th and
7th elements of the top row) and added together to give .58, and the other elements in the top row
of the matrix are multiplied by zeros in the cue so they don’t change anything when they are added
in. The same thing happens for each lower row of the matrix, to define each lower element of the
target, until you have the result in the figure.

Cued association seems to be directional (North Korea→ China, but China 9 North Korea).

(This will show up later in our discussion of priming.)

Practice 4.1:

Suppose you have cue and target mental states characterized by the below patterns of cortical
activation. What synaptic weights result from long-term potentiation of the cue state immediately
followed by the target state:

synaptic weights (cue:columns; target:rows)︷                                            ︸︸                                            ︷

=

target︷︸︸︷
.50

.0

.0

.0

.0

.50

.50

.50

cue︷                                            ︸︸                                            ︷

.0 .50 .0 .50 .0 .00 .50 .50

Practice 4.2:

Now suppose you cue the below associative memory matrix of synaptic weights with the below
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vector of cortical activations. What will be the result?

target︷︸︸︷

=

synaptic weights (cue:columns; target:rows)︷                                            ︸︸                                            ︷
.0 .0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0 .0

.0 .25 .25 .0 .25 .0 .25 .0

.0 .25 .25 .0 .25 .0 .25 .0

.0 .0 .0 .0 .0 .0 .0 .0

.0 .25 .25 .0 .25 .0 .25 .0

.0 .25 .25 .0 .25 .0 .25 .0

.0 .0 .0 .0 .0 .0 .0 .0

cue︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

.0

4.3 Robustness to incomplete cues (‘holographic memory’)
Associations from incomplete cues yield complete (but weaker) targets:

target︷︸︸︷
.29

.0

.29

.0

.0

.29

.0

=

synaptic weights︷                                                 ︸︸                                                 ︷
.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

cue︷                      ︸︸                      ︷
.0

.0

.0

.0

.50

.0

.50

← missing!

← missing!

To compute the activation of each post-synaptic neuron (row) in the target vector, the activation
of each of the pre-synaptic neurons in the cue is multiplied by the synaptic weight in the memory
matrix for that pre-synaptic neuron (column) synapsing with that post-synaptic neuron (row). The
contributions of each pre-synaptic neuron are weighted by the corresponding synaptic weight and
added together. So, to compute the top element of the target, the two .50’s of the 5th and 7th

5



elements of the cue are multiplied by .29 and .29 (the 5th and 7th elements of the top row) and
added together to give .29, and the other elements in the top row of the matrix are multiplied by
zeros in the cue so they don’t change anything when they are added in. The same thing happens for
each lower row of the matrix, to define each lower element of the target, until you have the result
in the figure.

This provides a natural model of brain plasticity following trauma.

4.4 Associations can be combined
Multiple associations can be combined (stored together) in the same set of synapses:

target 1︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

cue 1︷                                      ︸︸                                      ︷

.0 .58 .0 .0 .58 .0 .58 +

target 2︷︸︸︷
.0

.50

.50

.0

.50

.0

.50

cue 2︷                                     ︸︸                                     ︷

.0 .0 .58 .58 .0 .58 .0

=

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .0 .0 .0 .0 .0

+

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

=

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

.0 .33 .29 .29 .33 .29 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0
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the resulting associations can still be cued:

target 1︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

=

synaptic weights︷                                      ︸︸                                      ︷
.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

.0 .33 .29 .29 .33 .29 .33

.0 .0 .0 .0 .0 .0 .0

.0 .0 .29 .29 .0 .29 .0

.0 .33 .0 .0 .33 .0 .33

.0 .0 .29 .29 .0 .29 .0

cue 1︷︸︸︷
.0

.58

.0

.0

.58

.0

.58

However, when the stored cues overlap (e.g. the 3rd element in the cues below):

target 1︷︸︸︷
.0

.58

.0

.0

.58

.0

.58

cue 1︷                                      ︸︸                                      ︷

.58 .0 .58 .0 .0 .58 .0 +

target 2︷︸︸︷
.0

.0

.58

.58

.0

.58

.0

cue 2︷                                      ︸︸                                      ︷

.0 .50 .50 .0 .50 .0 .50

=

.0 .0 .0 .0 .0 .0 .0

.33 .0 .33 .0 .0 .33 .0

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.33 .0 .33 .0 .0 .33 .0

.0 .0 .0 .0 .0 .0 .0

.33 .0 .33 .0 .0 .33 .0

+

.0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

.0 .29 .29 .0 .29 .0 .29

.0 .0 .0 .0 .0 .0 .0

=

.0 .0 .0 .0 .0 .0 .0

.33 .0 .33 .0 .0 .33 .0

.0 .29 .29 .0 .29 .0 .29

.0 .29 .29 .0 .29 .0 .29

.33 .0 .33 .0 .0 .33 .0

.0 .29 .29 .0 .29 .0 .29

.33 .0 .33 .0 .0 .33 .0
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the resulting associations ‘interfere’ with each other when cued, yielding a combined target:

combined target︷︸︸︷
.0

.58

.16

.16

.58

.16

.58

=

synaptic weights︷                                      ︸︸                                      ︷
.0 .0 .0 .0 .0 .0 .0

.33 .0 .33 .0 .0 .33 .0

.0 .29 .29 .0 .29 .0 .29

.0 .29 .29 .0 .29 .0 .29

.33 .0 .33 .0 .0 .33 .0

.0 .29 .29 .0 .29 .0 .29

.33 .0 .33 .0 .0 .33 .0

cue 1︷︸︸︷
.58

.0

.58

.0

.0

.58

.0

This has been proposed as a process by which forgetting happens [Howard & Kahana, 2002].

4.5 Graphical representations of mental states and cued associations
Recall mental states are coordinates of points in mental space, linked by cued associations:

target v1︷︸︸︷
.71

.0

.71

.0

.0

cue u1︷                        ︸︸                        ︷

.0 .58 .0 .58 .58 +

target v2︷︸︸︷
.0

.58

.58

.0

.58

cue u2︷                        ︸︸                        ︷

.0 .0 .71 .71 .0 =

.0 .41 .0 .41 .41

.0 .0 .41 .41 .0

.0 .41 .41 .82 .41

.0 .0 .0 .0 .0

.0 .0 .41 .41 .0

Cued associations in an associative memory can be represented graphically:

u1

v1

u2

v2

(arbitrarily squashing the n coordinates/dimensions into a two-dimensional figure).

4.6 Multiple associations (multiplexing and tensors)
Mental states can cue multiple targets without interference using ‘switching’ elements n.

(Let’s just assume these are the first few elements of each vector.)

Then define a ‘joint’ element for each non-switching element: fire if both it and switch n fire.
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Associations Mn may then be cued on these joint features instead of regular elements.

For example, if n = 3:

switch cue

joint

target

s[1] s[2] s[3] c[1]

t[1]

c[2]

t[2]

c[3]

t[3]

c[4]

t[4]

j[1,1] j[2,1] j[3,1]j[1,2] j[2,2] j[3,2]j[1,3] j[2,3] j[3,3]j[1,4] j[2,4] j[3,4]

Associations from joint features are modeled using numbered layered matrices (tensors):

target v1︷︸︸︷
.71

.0

.71

.0

.0

cue u1︷                        ︸︸                        ︷

.0 .58 .0 .58 .58 +

target v2︷︸︸︷
.0

.58

.58

.0

.58

cue u2︷                        ︸︸                        ︷

.0 .0 .71 .71 .0 =

associations M1︷                        ︸︸                        ︷
.0 .41 .0 .41 .41

.0 .0 .41 .41 .0

.0 .41 .41 .82 .41

.0 .0 .0 .0 .0

.0 .0 .41 .41 .0

target v3︷︸︸︷
.58

.58

.0

.58

.0

cue u1︷                        ︸︸                        ︷

.0 .58 .58 .0 .58 +

target v3︷︸︸︷
.58

.58

.0

.58

.0

cue u2︷                        ︸︸                        ︷

.0 .0 .71 .71 .0 =

associations M2︷                        ︸︸                        ︷
.0 .33 .74 .41 .33

.0 .33 .74 .41 .33

.0 .0 .0 .0 .0

.0 .33 .74 .41 .33

.0 .0 .0 .0 .0
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Numbered association layers can be represented graphically using edge labels:

u1

v1

u2

v2 v3

1 1 2 2

Similar ‘(de-)multiplexing’ and has been proposed as a model of the hippocampus [Marr, 1971].
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