
LING5702: Lecture Notes 15
Probabilistic parsing

We saw memory effects from vectors of neurons in an algorithmic-level sentence processing model.

Now we’ll see expectation effects in reading from discrete structures at the computational level.

Contents
15.1 Structural surprisal model [van Schijndel et al., 2013] 1
15.2 Comparitor (neural net) transformer model [Vaswani et al., 2017] 3
15.3 Self-paced reading and eye-tracking data . 4
15.4 Regression results of surprisal models [Oh et al., 2022] 5
15.5 Regression results of GPT-2 variants [Oh et al., 2022] 5

15.1 Structural surprisal model [van Schijndel et al., 2013]
Reading predictions come from surprisal – the log probability of each word given context:

S(wt ∣ w1..t−1)
def
= − log2 P(wt ∣ w1..t−1)

We can derive this from a structural model if we marginalize out the structure st:

− log2 P(wt ∣ w1..t−1) = − log2∑
st

P(wt st ∣ w1..t−1)

So instead of superposed vectors, we maintain lists of partial structures (derivation fragments).

Joint probabilities of words and structures are calculated from a recurrent sequence model:

P(wt st ∣ w1..t−1)
def
= ∑

st−1

transition model
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P(wt st ∣ st−1) ⋅

same joint at previous time step
³¹¹¹·¹¹¹µ
P(wt−1 st−1 ∣ w1..t−2)

where the transition model is broken into lexical and grammatical phases:

P(wt st ∣ st−1) =∑
`t ,gt

P(`t ∣ st−1) ⋅

P(wt ∣ st−1 `t) ⋅

P(gt ∣ st−1 `t wt) ⋅

P(st ∣ st−1 `t wt gt)

We’ll need the expected frequency of category c as a left descendant (‘left corner’) of category c0:

F(c ∣ c0)
def
=

for any path c1, . . . , cn of any length n from 1 to N
³¹¹·¹¹¹µ

N

∑
n=1
∑

c1,...,cn

probability of path from ancestor c0 to left descendant c
³¹¹·¹¹µ

~c = cn�
n

∏
i=1
∑
c′

P(ci−1 → ci c′ ∣ ci−1)

´¹¹¹¸¹¹¹¶
marginalize right child bc don’t care

1

Then using st−1=⟨as1
t−1
,bs1

t−1
, . . . ,asD

t−1
,bsD

t−1
⟩, define the probability of:

1. lexical (terminal) decisions `t=⟨m`t ,a`t⟩ where d = argmaxd′{a
d′
t−1≠�}:

P(`t ∣ st−1)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~a`t=asd
t−1
� ⋅

probability of zero-length path
³¹¹¹·¹¹µ

~bsd
t−1
=bsd

t−1
�

~bsd
t−1
=bsd

t−1
�+F(bsd

t−1
∣bsd

t−1
) ⋅

probability of terminal
³¹¹¹·¹¹¹µ
P(bsd

t−1
→ wt ∣ bsd

t−1
) if m`t = 1

F(a`t ∣bsd
t−1
)

~a`t=bsd
t−1
�+F(a`t ∣bsd

t−1
) ⋅

´¹¹¸¹¹¶
probability of longer path

P(a`t → wt ∣ a`t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¶
probability of terminal

if m`t = 0

asd
t−1
=N

bsd
t−1
=N-aD

wt=door

⇒

a`t=N

m`t = 1

asd
t−1
=N

bsd
t−1
=N-aD

wt=door

⇒

asd
t−1
=N

bsd
t−1
=N-aD

a`t=N-aD

m`t = 0

2. grammatical (non-terminal) decisions gt=⟨mgt ,agt ,bgt⟩ where d = argmaxd′{a
d′
t−1≠�} −m`t :

P(gt ∣ st−1 `t wt)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~agt=asd
t−1
� ⋅

probability of zero-length path
³¹¹¹·¹¹µ

~bsd
t−1
=bsd

t−1
�

~bsd
t−1
=bsd

t−1
�+F(bsd

t−1
∣bsd

t−1
) ⋅

probability of non-terminal
³¹¹·¹¹µ
P(bsd

t−1
→ a`t bgt ∣ bsd

t−1
) if mgt = 1

F(agt ∣bsd
t−1
)

~agt=bsd
t−1
�+F(agt ∣bsd

t−1
) ⋅

´¹¹¹¸¹¹¹¶
probability of longer path

P(agt → a`t bgt ∣ agt)
´¹¹¹¸¹¹¶

probability of non-terminal

if mgt = 0

asd
t−1
=S

bsd
t−1
=V-aN

a`t=V-aN-bN

⇒

agt=S

bgt=N

mgt = 1

asd
t−1
=S

bsd
t−1
=V-aN

a`t=V-aN-bN

⇒

asd
t−1
=S

bsd
t−1
=V-aN

agt=V-aN

bgt=N

mgt = 0

Finally, define probability of st=⟨as1
t
,bs1

t
, . . . ,asD

t
,bsD

t
⟩ where d = argmaxd′{asd′

t−1
≠�} + 1 −m`t −mgt :

P(st ∣ st−1 `t wt gt)
def
=

D

∏
d′=1

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

~asd′
t
,bsd′

t
= asd′

t−1
,bsd′

t−1
� if d′ < d

~asd′
t
,bsd′

t
= agt ,bgt� if d′ = d

~asd′
t
,bsd′

t
= �,�� if d′ > d

2

15.2 Comparitor (neural net) transformer model [Vaswani et al., 2017]
Transformers associate ‘queries’ and ‘keys’ of K items to choose targets of attention.

These associations are modeled using ‘query’, ‘key’ and ‘value’ matrices Q,K,V ∈ RD×D.

Each item in a transformer is represented in a D-dimensional vector H` ∈ RD×K at each level `.

At each level, each item may ‘attend’ to one other item per ‘head’ h.

This is done by comparing queries and keys, using inner products of these as a similarity measure.

Values, weighted by this similarity, are then passed to the next level:

H`,h =

value for each target
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
V`,h H`−1 SoftMax((

key for each target
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
K`,h H`−1)

⊺
query for each source
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Q`,h H`−1

´¹¹¸¹¹¶
attention matrix

)

where SoftMax is our multinomial logistic function on M ∈ RJ×N with N instances of J values:

SoftMax(M) =
exp(M)

1⊺ exp(M)

The outputs H`,h of the heads are then concatenated and fed into another (e.g. sigmoid) layer FF:

H` = FF(∑
h
δh ⊗H`,h

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
concatenate

)

Run the model with several different words to calculate P(wt ∣ w1, . . . ,wt−1).

Experiments used several surprisal models as comparitors:

• vSLC [van Schijndel et al., 2013]: A left-corner parser based on a PCFG with subcatego-
rized syntactic categories [Petrov et al., 2006], trained on a generalized categorial grammar
reannotation of Sections 02 to 21 of the WSJ corpus.

• Structural [Oh et al., 2022]: Same but extended with semantic contexts and morphology.

• JLC [Jin & Schuler, 2020]: A neural left-corner parser based on stack LSTMs
[Dyer et al., 2015], trained on Sections 02 to 21 of the WSJ corpus.

• RNNG [Hale et al., 2018, Dyer et al., 2016]: An LSTM-based model with explicit phrase
structure, trained on Sections 02 to 21 of the WSJ corpus.

• GPT2XL [Radford et al., 2019]: GPT-2 XL, a 48-layer decoder-only autoregressive Trans-
former model trained on ∼8B tokens of the WebText dataset.

• 5-gram [Heafield et al., 2013]: A 5-gram language model with modified Kneser-Ney
smoothing trained on ∼3B tokens of the English Gigaword Corpus [Parker et al., 2009].

3

• GLSTM [Gulordava et al., 2018]: A two-layer LSTM model trained on ∼80M tokens of the
English Wikipedia.

• JLSTM [Jozefowicz et al., 2016]: A two-layer LSTM model with CNN character inputs
trained on ∼800M tokens of the One Billion Word Benchmark [Chelba et al., 2013].

15.3 Self-paced reading and eye-tracking data
Structural and comparitor surprisal models were fit to reading time observations from:

1. Self-paced reading times from 181 subjects – 10 naturalistic stories: 10,245 tokens.

The data were filtered to exclude observations corresponding to sentence-initial and
sentence-final words, observations from subjects who answered fewer than four compre-
hension questions correctly, and observations with durations shorter than 100 ms or longer
than 3000 ms.

This resulted in a total of 770,102 observations

All observations were log-transformed prior to model fitting.

2. Eye-gaze durations from 10 subjects – 67 newspaper editorials: 51,501 tokens.

The data were filtered to exclude unfixated words, words following saccades longer than four
words, and words at starts and ends of sentences, screens, documents, and lines.

This resulted in a total of 195,507 observations

All observations were log-transformed prior to model fitting.

Linear regressions were fit with the following baseline predictors, both with and without surprisal:

• Self-paced reading times [Futrell et al., 2021]: word length measured in characters, index of
word position within each sentence

• Eye-gaze durations [Kennedy et al., 2003]: word length measured in characters, index of
word position within each sentence, saccade length, whether or not the previous word was
fixated

4

15.4 Regression results of surprisal models [Oh et al., 2022]
Structural models predict words better (perplexity is 1

P(wt ∣w1,...,wt−1)), but not reading time:

LMER on SPR durations: baseline LL: -18988.9 (log probability of fit w. Gaussian noise)

LMER on go-past times: baseline LL: -64927.3

15.5 Regression results of GPT-2 variants [Oh et al., 2022]
GPT-2 (transformer model) predicts reading times worse as models get larger:

• GPT2S: GPT-2 Small, which has 12 layers and ∼124M parameters;

• GPT2M: GPT-2 Medium, which has 24 layers and ∼355M parameters;

• GPT2L: GPT-2 Large, which has 36 layers and ∼774M parameters;

• GPT2XL: GPT-2 XL, which has 48 layers and ∼1558M parameters.

LMER on duration; Data: [Futrell et al., 2021]; Baseline LL: -18988.9

LMER on go-past; Data: [Kennedy et al., 2003]; Baseline LL: -64927.3

5

References
[Chelba et al., 2013] Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., &

Robinson, T. (2013). One billion word benchmark for measuring progress in statistical lan-
guage modeling. arXiv preprint arXiv:1312.3005.

[Dyer et al., 2015] Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015).
Transition-based dependency parsing with stack long short-term memory. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers (pp. 334–
343).: The Association for Computer Linguistics.

[Dyer et al., 2016] Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent neu-
ral network grammars. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (pp. 199–209).

[Futrell et al., 2021] Futrell, R., Gibson, E., Tily, H. J., Blank, I., Vishnevetsky, A., Piantadosi, S.,
& Fedorenko, E. (2021). The Natural Stories corpus: A reading-time corpus of English texts
containing rare syntactic constructions. Language Resources and Evaluation, 55, 63–77.

[Gulordava et al., 2018] Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M.
(2018). Colorless green recurrent networks dream hierarchically. In NAACL-HLT (pp. 1195–
1205).

[Hale et al., 2018] Hale, J., Dyer, C., Kuncoro, A., & Brennan, J. (2018). Finding syntax in hu-
man encephalography with beam search. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (pp. 2727–2736).

[Heafield et al., 2013] Heafield, K., Pouzyrevsky, I., Clark, J. H., & Koehn, P. (2013). Scalable
modified Kneser-Ney language model estimation. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (pp. 690–696). Sofia, Bulgaria.

[Jin & Schuler, 2020] Jin, L. & Schuler, W. (2020). Memory-bounded neural incremental parsing
for psycholinguistic prediction. In Proceedings of the 16th International Conference on Parsing
Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependen-
cies (pp. 48–61).

[Jozefowicz et al., 2016] Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016).
Exploring the limits of language modeling. CoRR.

[Kennedy et al., 2003] Kennedy, A., Pynte, J., & Hill, R. (2003). The Dundee corpus. In Pro-
ceedings of the 12th European conference on eye movement.

[Oh et al., 2022] Oh, B.-D., Clark, C., & Schuler, W. (2022). Comparison of structural parsers
and neural language models as surprisal estimators. Frontiers in Artificial Intelligence, 5.

[Parker et al., 2009] Parker, R., Graff, D., Kong, J., Chen, K., & Maeda, K. (2009). English
Gigaword LDC2009T13.

6

[Petrov et al., 2006] Petrov, S., Barrett, L., Thibaux, R., & Klein, D. (2006). Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 44th Annual Meeting of the
Association for Computational Linguistics (COLING/ACL’06).

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I.
(2019). Language models are unsupervised multitask learners. ArXiv.

[van Schijndel et al., 2013] van Schijndel, M., Exley, A., & Schuler, W. (2013). A model of lan-
guage processing as hierarchic sequential prediction. Topics in Cognitive Science, 5(3), 522–
540.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In NIPS (pp. 5998–6008).

7

	Structural surprisal model vanschijndeletal13:topics
	Comparitor (neural net) transformer model vaswanietal17
	Self-paced reading and eye-tracking data
	Regression results of surprisal models ohetal22
	Regression results of GPT-2 variants ohetal22

