LING5702: Lecture Notes 17 Quantifier Scope

The last step in obtaining complex ideas from sounds and gestures is quantifier scope.

Contents

17.1	Simple scope disambiguation [Schuler & Wheeler, 2014]	1
17.2	Evidence for explicit scoping [Dotlačil & Brasoveanu, 2015]	2

17.2 Evidence for explicit scoping [Dotlačil & Brasoveanu, 2015]

Simple scope disambiguation [Schuler & Wheeler, 2014] 17.1

We'll assume the following constants (with a localist representation: referential states are δ_{y}):

- 1. $V \in \mathbb{R}$: a maximum number of referential states (variables in lambda calculus expressions);
- 2. $\mathbf{q} \in \{0, 1\}^V$: a vector of zeros or ones indicating if each referential state is a quantification;
- 3. $\mathbf{v} \in \mathbb{R}^{V}$: a vector of precedence ('readiness') values for each referential state, based on:
 - (a) quantifier type (e.g. Each has low precedence, so it usually scopes last/highest)
 - (b) participated-in predicates (e.g. y in $\ln x$ y will scope higher than x)
 - (c) order in sentence (this enforces a preference for in-situ scope)
- 4. $\mathbf{E}_n \in \mathbb{R}^{V \times V}$: a matrix of associations from functions to arguments numbered by *n*;

We'll also assume **inheritance** associations ('rin') from the lecture notes on sentence processing:

$$\mathbf{E}_{\text{rin}} = \mathbf{E}_1 \operatorname{diag}(\mathbf{q}) \mathbf{E}_2^{\top}$$

We'll need **closure** matrices directly associating states connected by any number of associations:

$$\mathbf{E}_{\mathrm{P}} = \mathbf{I} + \sum_{n=1}^{N} \prod_{i=1}^{n} \sum_{\ell \in \{1,2,3,\dots\}} \mathbf{E}_{\ell} \operatorname{diag}(\mathbf{1}-\mathbf{q}) + \operatorname{diag}(\mathbf{1}-\mathbf{q}) \mathbf{E}_{\ell}^{\top}$$
$$\mathbf{E}_{\mathrm{I}} = \mathbf{I} + \sum_{n=1}^{N} \prod_{i=1}^{n} \sum_{\ell \in \{\mathrm{cin},\mathrm{ein},\mathrm{rin}\}} \mathbf{E}_{\ell} + \mathbf{E}_{\ell}^{\top}$$

First, initialize iteration-dependent variables:

- 1. $\mathbf{Q}_0 = \mathbf{0}^{V \times V}$: an initially empty matrix of immediate outscopings;
- 2. $\mathbf{P}_0 = \mathbf{E}_P + \mathbf{I} \text{diag}(\mathbf{E}_P)$: a matrix of fully-connected partitions, starting with no inheritances;
- 3. $\mathbf{u}_0 = \sum_{v \text{ s.t. } v = \operatorname{argmax} \operatorname{diag}(v) \mathbf{P}_0 \delta_v} \delta_v$

Then, for each iteration $i \in \{1, 2, 3, ...\}$ such that some states remain un-used $(\mathbf{u}_{i-1} \neq \mathbf{1})$:

- 1. $u_i = \operatorname{argmax} \operatorname{diag}(\mathbf{v}) \underbrace{\operatorname{diag}(\mathbf{1} \mathbf{E}_{\mathrm{I}}(\mathbf{1} \mathbf{u}_{i-1}))}_{\text{not connected to unused}} (\mathbf{1} \mathbf{Q}_{i-1}^{\mathsf{T}}\mathbf{1})$: get readiest used un-scoped state;
- 2. $\mathbf{P}_i = \mathbf{a} \, \mathbf{a}^{\mathsf{T}} + \underbrace{\mathbf{P}_{i-1} \operatorname{diag}(\mathbf{1}-\mathbf{a})}_{\text{copy non-merged partitions}}$ where $\mathbf{a} = \mathbf{P}_{i-1} \, \mathbf{E}_{\mathrm{I}} \, \delta_{u_i}$: merge partitions connected via u_i ;
- 3. $v_i = \operatorname{argmax} \operatorname{diag}(\mathbf{v}) \operatorname{diag}(\mathbf{1} \mathbf{u}_{i-1}) \mathbf{P}_i \delta_{u_i}$: find readiest unused state in new partition;
- 4. $\mathbf{Q}_i = \mathbf{Q}_{i-1} + \delta_{v_i} \delta_{u_i}^{\mathsf{T}} \mathbf{E}_{\mathbf{I}}$: associate referential states in scope matrix;
- 5. $\mathbf{u}_i = \mathbf{u}_{i-1} + \delta_{v_i}$: add v_i as used.

Participant and scope associations define lambda calculus expressions as described earlier.

17.2 Evidence for explicit scoping [Dotlačil & Brasoveanu, 2015]

It does seem that scope is explicitly calculated like this (i.e. doesn't remain underspecified):

- stimuli: sentences presented in eye-tracking:
 - (a) A caregiver comforted a child every night. The caregivers wanted the children to...
 - (b) A caregiver comforted a child every night. The caregivers wanted the <u>child</u> to...
 - (c) A caregiver comforted a child every night. The caregiver wanted the children to...
 - (d) A caregiver comforted a child every night. The caregiver wanted the child to...

These analyses are eliminated at *caregiver*, but neither is the preferred in-situ analysis:

All $(\lambda_t \text{ Night } t)$	Some	Some $(\lambda_c \text{ Child } c)$	
$(\lambda_t \text{ Some } (\lambda_k \text{ Caregiver }))$	<i>k</i>)	$(\lambda_c \text{ All } (\lambda_t \text{ Night } t))$	
$(\lambda_k \text{ Some } (\lambda_c))$	Child c)	$(\lambda_t \text{ Some } (\lambda_k \text{ Caregiver } k))$	
$(\lambda_c$	Comfort <i>t k c</i>)))	$(\lambda_k \operatorname{Comfort} t k c)))$	

The preferred in-situ (first) analysis is eliminated at *children*:

Some $(\lambda_k \text{ Caregiver } k)$	Some $(\lambda_k \text{ Caregiver } k)$
$(\lambda_k \text{ Some } (\lambda_c \text{ Child } c))$	$(\lambda_k \text{ All } (\lambda_t \text{ Night } t))$
$(\lambda_c \text{ All } (\lambda_t \text{ Night } t))$	$(\lambda_t \text{ Some } (\lambda_c \text{ Child } c))$
$(\lambda_t \operatorname{Comfort} t k)$	c))) $(\lambda_c \operatorname{Comfort} t k c)))$

- measure: eye-tracking fixation durations at *children* (and spillover word).
- results: singular-plural (c) is slowest at *children*, suggests dynamic reanalysis there.

(We don't have a scope re-analysis model, though.)

References

- [Dotlačil & Brasoveanu, 2015] Dotlačil, J. & Brasoveanu, A. (2015). The manner and time course of updating quantifier scope representations in discourse. *Language, Cognition and Neuroscience*, 30(3), 305–323.
- [Schuler & Wheeler, 2014] Schuler, W. & Wheeler, A. (2014). Cognitive compositional semantics using continuation dependencies. In *Third Joint Conference on Lexical and Computational Semantics* (*SEM'14).