
LING5702: Lecture Notes 19
Quantifier Scope

Sentences can often have multiple different readings, depending on scope:

• Two people are in each booth.

These sentences can be understood with an in-situ interpretation:

Two (λx Person x)
(λx All (λy Booth y)

(λy Some (λe In y x e)
(λe True)))

or a raised interpretation:

All (λy Booth y)
(λy Two (λx Person x)

(λx Some (λe In y x e)
(λe True)))

The raised interpretation is often non-local (can cross clause boundaries):

• At least two CEOs said a representative was going to each country.

Contents
19.1 Evidence for explicit scoping [Dotlačil & Brasoveanu, 2015] 1
19.2 Computational-level scope resolution [Cooper, 1983, Keller, 1988] 2
19.3 Algorithmic-level scope resolution [Schuler & Wheeler, 2014] 4

19.1 Evidence for explicit scoping [Dotlačil & Brasoveanu, 2015]
Scope seems to be explicitly calculated after each sentence (i.e. doesn’t remain underspecified):

• stimuli: sentences presented in eye-tracking:

(a) A caregiver comforted a child every night. The caregivers wanted the children to...

(b) A caregiver comforted a child every night. The caregivers wanted the child to...

(c) A caregiver comforted a child every night. The caregiver wanted the children to...

(d) A caregiver comforted a child every night. The caregiver wanted the child to...

These analyses are eliminated at caregiver, but neither is the preferred in-situ analysis:

All (λt Night t)
(λt Some (λk Caregiver k)

(λk Some (λc Child c)
(λc Comfort t k c)))

Some (λc Child c)
(λc All (λt Night t)

(λt Some (λk Caregiver k)
(λk Comfort t k c)))

1

The preferred in-situ (first) analysis is eliminated at children:

Some (λk Caregiver k)
(λk Some (λc Child c)

(λc All (λt Night t)
(λt Comfort t k c)))

Some (λk Caregiver k)
(λk All (λt Night t)

(λt Some (λc Child c)
(λc Comfort t k c)))

• measure: eye-tracking fixation durations at children (and spillover word).

• results: singular-plural (c) is slowest at children, suggests dynamic reanalysis there.

19.2 Computational-level scope resolution [Cooper, 1983, Keller, 1988]
We can define scope raising at the computational level, using logic.

First we generalize across types using schemas, defined with meta-variables γ and δ.

Specifically, we allow functions to take any type γn with any number n of arguments δ1, ..., δn:

γ0 = t
γn = 〈δn, γn−1〉

Then we augment our semantics with a store or context Γ,∆,Θ, delimited by ‘`’:

∆︸︷︷︸
store

` ϕ : 〈γn, γn−1〉︸ ︷︷ ︸
type︸ ︷︷ ︸

expression︸ ︷︷ ︸
sequent

These are called sequents. The store Γ,∆,Θ of each sequent is a list of other sequents and variables.

Quantifier functions ϕ can now be stored, leaving variables x of type δn in their place:

∆ `ϕ : 〈γn, γn−1〉︸ ︷︷ ︸
sequent

⇒ (∆ ` ϕ : 〈γn, γn−1〉︸ ︷︷ ︸
stored sequent

, x : δn︸︷︷︸
variable

) ` x : δn (Quantifier Storage)

Stored functions ϕ are then retrieved and applied to bind the new variable x at a wider scope ψ:

Γ, (∆ ` ϕ : 〈γn, γn−1〉︸ ︷︷ ︸
stored sequent

, x : δn︸︷︷︸
variable

),Θ `ψ : γn−1 ⇒ Γ,∆,Θ ` (ϕ (λx:δn ψ)) : γn−1 (Quantifier Retrieval)

Note the retrieved sequents and functions need not be retrieved in the same order they are stored!

2

Other rules are then augmented with stores that are just concatenated without being changed.

Γ `ϕ : 〈α, β〉 ∆ ` χ : α ⇒ Γ,∆ ` (ϕ χ) : β (Forward Function Application)
Γ ` χ : α ∆ `ϕ : 〈α, β〉 ⇒ Γ,∆ ` (ϕ χ) : β (Backward Function Application)

and similarly for Modification and Closure rules.

Now stored sequents can propagate up the translation and be retrieved in any order!

This approach to quantifier scope raising is called (nested) Cooper storage.

Now we can translate our preferred reading of Two people occupy every booth:

` (All Booth (λy:e Two Person (In y))) : t

(` (All Booth) : 〈〈e, t〉, t〉, y : e) ` (Two Person (In y)) : t

(` (All Booth) : 〈〈e, t〉, t〉, y : e) ` (In y) : 〈e, t〉

(` (All Booth) : 〈〈e, t〉, t〉, y : e) ` y : e

` (All Booth) : 〈〈e, t〉, t〉

` Booth : 〈e, t〉

booth

` All : 〈〈e, t〉, 〈〈e, t〉, t〉〉

every

` In : 〈e, 〈e, t〉〉

occupy

` (Two Person) : 〈〈e, t〉, t〉

` Person : 〈e, t〉

people

` Two : 〈〈e, t〉, 〈〈e, t〉, t〉〉

Two

We can also translate our in-situ reading without using schematized quantifiers:

(Two Person (λx:e All Booth (λy:e In y x))) : t

(` (Two Person) : 〈〈e, t〉, t〉, x : e) ` (All Booth (λy:e In y x)) : t

(` (Two Person) : 〈〈e, t〉, t〉, x : e), (` (All Booth) : 〈〈e, t〉, t〉, y : e) ` (In y x) : t

(` (All Booth) : 〈〈e, t〉, t〉, y : e) ` (In y) : 〈e, t〉

(` (All Booth) : 〈〈e, t〉, t〉, y : e) ` y : e

` (All Booth) : 〈〈e, t〉, t〉

` Booth : 〈e, t〉

booth

` All : 〈〈e, t〉, 〈〈e, t〉, t〉〉

every

` In : 〈e, 〈e, t〉〉

occupy

(` (Two Person) : 〈〈e, t〉, t〉, x : e) ` x : e

` (Two Person) : 〈〈e, t〉, t〉

` Person : 〈e, t〉

people

` Two : 〈〈e, t〉, 〈〈e, t〉, t〉〉

Two

We can likewise model negation without schemas, since (recall) it can be modeled as quantification.

3

Practice 19.1: trees with sequents

Draw a translation tree with logical sequents at each branch for the phrase:

each country

in which each country undergoes storage.

Practice 19.2: trees with sequents

Draw a translation tree with logical sequents at each branch for the following sentence:

A city in each country is coastal.

in which each country is scoped high.

19.3 Algorithmic-level scope resolution [Schuler &Wheeler, 2014]
At the algorithmic level, scope can be added after processing using extra cued associations:

All (λx Booth x) (λx′ Two (λy Person y) (λy′ In x′ y′))⇔

x x′

All

Booth Two

y

Person

y′

In

scopescope

1

2

0 12

0

1

0 1

0

2

1

0

We’ll assume the following constants (with a localist representation: referential states are δv):

1. V ∈ R: a maximum number of referential states (variables in lambda calculus expressions);

2. q ∈ {0, 1}V : a vector of zeros or ones indicating if each referential state is a quantification;

3. v ∈ RV : a vector of precedence (‘readiness’) values for each referential state, based on:

(a) quantifier type (e.g. Each has low precedence, so it usually scopes last/highest)

(b) participated-in predicates (e.g. y in In x y will scope higher than x)

(c) order in sentence (this enforces a preference for in-situ scope)

4

4. En ∈ RV×V : a matrix of associations from functions to arguments numbered by n;

We’ll also assume inheritance associations (‘rin’) from the lecture notes on sentence processing:

Erin = E1 diag(q) E2
>

We’ll need closure matrices directly associating states connected by any number of associations:

EP = I +

N∑
n=1

n∏
i=1

∑
`∈{1,2,3,... }

E` diag(1−q) + diag(1−q) E`
>

EI = I +

N∑
n=1

n∏
i=1

∑
`∈{cin,ein,rin}

E` + E`
>

First, initialize iteration-dependent variables:

1. Q0 = 0V×V : an initially empty matrix of immediate outscopings;

2. P0 = EP + I− diag(EP): a matrix of fully-connected partitions, starting with no inheritances;

3. u0 =
∑

v s.t. v=argmax diag(v) P0 δv

δv: a vector of used referential states, starting with the readiest.

Then, for each iteration i ∈ {1, 2, 3, . . . } such that some states remain un-used (ui−1 , 1):

1. ui = argmax diag(v) diag(1−EI (1−ui−1))︸ ︷︷ ︸
not connected to unused

(1−Qi−1
>1): get readiest used un-scoped state;

2. Pi = a a> + Pi−1 diag(1−a)︸ ︷︷ ︸
copy non-merged partitions

where a = Pi−1 EI δui: merge partitions connected via ui;

3. vi = argmax diag(v) diag(1−ui−1) Pi δui: find readiest unused state in new partition;

4. Qi = Qi−1 + δvi δui
>EI: associate referential states in scope matrix;

5. ui = ui−1 + δvi: add vi as used.

Participant and scope associations define lambda calculus expressions as described earlier.

References
[Cooper, 1983] Cooper, R. (1983). Quantification and syntactic theory. Dordrecht, Holland: D.

Reidel.

[Dotlačil & Brasoveanu, 2015] Dotlačil, J. & Brasoveanu, A. (2015). The manner and time course
of updating quantifier scope representations in discourse. Language, Cognition and Neuro-
science, 30(3), 305–323.

5

[Keller, 1988] Keller, W. R. (1988). Nested cooper storage: The proper treatment of quantifiers
in ordinary noun phrases. In E. U. Reyle & E. C. Rohrer (Eds.), Natural Language Parsing and
Linguistic Theories (pp. 432–447). D. Reidel.

[Schuler & Wheeler, 2014] Schuler, W. & Wheeler, A. (2014). Cognitive compositional seman-
tics using continuation dependencies. In Third Joint Conference on Lexical and Computational
Semantics (*SEM’14).

6

	Evidence for explicit scoping dotlacilbrasoveanu15
	Computational-level scope resolution cooper83,keller88
	Algorithmic-level scope resolution schulerwheeler14

