1. (a) [7 pts.] If associative memory M is made from one cue u and two targets v_1 and v_2:

$$M = \begin{bmatrix}
0.60 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.80 & 0.58 & 0.0 & 0.58 & 0.58 \\
\end{bmatrix}$$

what is the result of cueing M with u? (HINT: You don’t need to calculate the matrix!)

(b) [3 pts.] Describe the result in a sentence in terms of v_1 and v_2.

\[\text{result} = \begin{bmatrix}
\end{bmatrix} \]
2. (a) [7 pts.] If associative memory M is made from cues u_1 and u_2 and targets v_1 and v_2:

$$M = \begin{pmatrix}
0 & 0.60 & 0.80 \\
0.60 & 0 & 0.80 \\
0 & 0 & 0.60 \\
0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 0.60 \\
0 & 0 \\
0 & 0.80 \\
0 & 0
\end{pmatrix}$$

what results from cueing M with a mixture of $0.3u_1 + 0.7u_2$? (You needn’t calculate the matrix!)

(b) [3 pts.] Describe the result in a sentence in terms of v_1 and v_2.
3. (a) [7 pts.] If a filter F is made from auto-associated vectors v_1 and v_3 (NOTE variable names!):

$$F = v_1 (\text{light}) \cdot 0.60 \cdot 0.80 \cdot 0 \cdot 0 \cdot 0 \cdot 0 + v_3 (\text{flight}) \cdot 0 \cdot 0.58 \cdot 0.58 \cdot 0.0 \cdot 0.58 \cdot 0.0$$

what is the result of cueing F with a mixture of $0.2v_1 + 0.8v_2$? (You needn’t calculate the matrix!)

(b) [3 pts.] Describe the result in a sentence in terms of v_1, v_2 and v_3.

3