Ling 5801: Lecture Notes 2
From FSAs to Regular Expressions

It’s often useful to search strings for patterns (e.g. to find all sentences containing two commas).

Regular Expressions, based on FSAs, provide a nice shorthand for such patterns.

Contents

2.1 Reoular eXpression SVILAX o o o oo

R4 Limits of FSAS/RES . . o o o oo oo e

2.5 Cognitive plausibility of FSAS . . .+« v oo oo

2.1 Regular expression syntax

A Regular Expression (RE) p is a string made up of:

observation symbols: x e.g.: language:
concatenations of REs: p’p” e.g.: language:
disjunctions of REs: (o’ | p”) e.g. language:
‘Kleene star’ repetitions of RE: (p')* e.g.: language:

(Epsilon € means the empty string: literally, no characters.)

For example:

recognizes the following sentences:

REs are often augmented with the following (equiv. to combinations of concat, disjn, star):

wildcard symbols: . = (x|x’|x"|...) e.g.: lang:
symbol disjunctions: [xx'x”] = (x[x’[x"") e.g.: lang:
symbol ranges: [x-x] = (x]...|x") e.g.: lang:
one or more repetitions of REs (') = p’(0’)* e.g. lang:
zero or one repetitions of REs (o)’ = (o'|€) e.g.: lang:

Most RE implementations assume . *p.*, let anchors ‘*’ and ‘$’ match beginning/end of line.

1

2.2 Reduction of REs to FSAs

We can build an FSA FSA(p) that accepts the same language as any RE p.
In other words: V¥, L(FSA(p)) = L(p).

In other words: L(RE) C L(FSA).

Base case — for observations in RE:
e observation symbols x:

FSA(x) = ({q.q'}, {x}, {q) {g'}, (g, x.4D)))
graphically:

Inductive step — combine REs using ‘e-transitions’ w/o associated obs, then compile out

(assume state sets of sub-expressions Qrsa(,,) and Qfsa,,) are disjoint):

e concatenations of REs p1, p:

FSA(p1p2) = { OFsap) Y OFsa)s
Xrsap) Y XEsa()»
S FsA(o1)»
Frsa),
Mrsapy Y MEsapy) UKD €,97) | ¢ €Frsap), 4" €S Fsapn})

graphically:

e disjunctions of REs py, p»:

FSA(p1 | p2) = QFsa) Y OFsan)
Xrsap) Y XFsa)s

S Fsan Y S Fsaq)»
Frsap) Y Frsag)s
Mrsap) Y MEsa,))

graphically:

e Kleene star repetitions of RE p:

FSA(p*) = { Orsapy Y 1g.q"},
XFsa(p)s
{g},
{qg”},
Mpsapy UK. €,9) | ¢ €S Fsapt Y G",€,9") | 4" € Frsap)}
Ulg.€.9").{q". €. q)})

graphically:

For example: €

Finally, remove e-transitions — this is an algorithm, a procedure for computing something:

1. € closure — add shortcuts for progressively longer chains of e-transitions:

M(A) = MA
for each chain length k from 1 to |Q|:
Mﬁ = Mf_l U {<Q9 €, q”> | <Q» €, (]'>€Mk_1, <q,’ €, qN>€MA}

2. merge e-transitions with labeled transitions, start/final states to get new automaton A”:

A" =(Qa,
X4,
Sa U iq |3, 9€S4, (g6,)yeM,
Fo U {ql3,(q.€eqYeMZ, ¢ €F),
g, x,q") 1 (g, x,q" YeMy, xeX4} U {q,x,q4") | {(q.€, 6]/>€M|AQ|, (q,x,q"YeEMA})

For example (ignoring unconnected states):

that

Practice:
Write a regular expression to recognize the infinite language containing the following
(treat each word as a single symbol):

hello ok bye

hello ok ok bye

hello ok ok ok bye
hello ok ok ok ok bye

2.3 Closure properties
FSAs also closed under the following operations (so REs could support them):

e reversal of RE p: (change direction of all arrows)

FSA(P®) = { Orsap)-
XFsa)»
FEsaq)s
S FSA(p)s
Ug'sx,q) 1{q, X, q") € MEpsa})

e negation of RE p: (swap final and non-final states)

FSA(=p) ={ QFSA(p),
XFsaq)»
S FsA(p)s
Orsaw) — Frsap)s
Mpsag))

e conjunction of REs py, p;: (use pairs of sub-expression states)

FSA(p1 A p2) = OFsap) X OFsap)»
XrEsa) N XEsas)s

4. 9") | €S Fsap)» 4" €S Fsapn)»
q.9) | g€ Frsa))» 4" € Frsagy)}s
{La:q"), x.4q',q"")) 1{q, X, ") € MEsa),{q"» X, ¢'"") € MEsapy})

e exclusion of REs py, p,: (combine negation and conjunction)

FSA(p1 = p2) = FSA(p1 A =p2)

2.4 Limits of FSAs/REs

FSAs (and therefore REs) can only recognize sequences with finitely-bounded memory

Pumping lemma:

If L is an infinite regular language (in L(F'SA)), then 1, . such that y#€ and xy"z € L for all n>0
(where y" means n repetitions of string y).

Example: a"b": {€, ab, aabb, aaabbb, . ..} is not regular.
Why not?
Because, in order to allow infinite languages with finites states, y must occur either. ..
e within the a’s, generating strings like aaaabbb when pumped, or
e within the b’s, generating strings like aaabbbb when pumped, or
e within the crossover from a’s to b’s, generating strings like aaababbb when pumped
none of which are in a"b".

NOTE: the same problem comes up in trying to recognize nested parentheses!

2.5 Cognitive plausibility of FSAs
Are we FSAs?
e Problem for FSAs — we seem to learn general syntactic patterns w. unbounded nesting:
[np [np I [xp Ilv 11 (NP — NP NP V)

When center NP is expanded, this generates non-regular language

e.g. ‘[np 1 [np [np Ine L] v 111l]

e But in practice — we can’t keep track of more than 4 or so disconnected ideas:

This is called a ‘competence / performance’ distinction: we are FSAs emulating non-FSAs.

	Regular expression syntax
	Reduction of REs to FSAs
	Closure properties
	Limits of FSAs / REs
	Cognitive plausibility of FSAs

