
Ling 5801: Lecture Notes 3
From Regular Expressions to Scripting

We generally run corpus experiments, etc., by typing unix commands into a terminal window.

Practical: If you’re new to this, here’s how to open a terminal window:
• On Mac/OSX: find the Terminal app in Finder under Applications/Utilities.
• On Windows: enable ‘Windows Subsystem for Linux’, then find Terminal in the Start menu.

You should then type cd /mnt/c/Users/〈yourname〉 to be in your PC home directory.

Contents
3.1 Notation for directory structure . 1
3.2 Unix commands for basic navigation . 2
3.3 Unix commands with path patterns using regular expressions 3
3.4 Unix commands for text processing using regular expressions 5
3.5 Unix commands not for navigation, using no regular expressions 5
3.6 Chaining commands . 6
3.7 Makefiles . 6
3.8 Advanced Makefile scripts (if there’s time) . 7

3.1 Notation for directory structure
Commands usually manipulate files, organized in your computer’s directories like a family tree:

ε (‘root’)

. . .Volumes

Time Machine BackupsMacintosh HD

Users

BartLisaShared

(Here, and elsewhere in these notes, ‘ε’ indicates an empty name, consisting of no characters.)

Files are identified using paths: sequences of directories, delimited by the slash character ‘/’.

For example, if you are at the root (topmost) directory, the path:

Users/Lisa/sample.txt

denotes the sample.txt in the Lisa directory, which is in the Users directory.

Paths may also refer to parent directories ‘..’ to ascend back up the tree.

For example, if you are in the Lisa directory:

1

../Bart

denotes the Bart directory, which is a sibling to the Lisa directory.

3.2 Unix commands for basic navigation
The general format of a command is: 〈operator〉 〈argument〉, like a verb followed by a direct object.

Some useful commands to start with:

1. pwd prints the working directory.

For example, assuming the Terminal app starts you in your home directory, type:

pwd

and unix should respond with a path, like:

/Users/yourname

2. curl -O 〈web-address〉

downloads the html of the 〈web-address〉 argument.

For example:

curl -O https://www.asc.ohio-state.edu/schuler.77/courses/5801/sample.txt
ls

should copy the file ‘sample.txt’ from the web into the current directory:

sample.txt

3. ls lists the contents of the current directory.

For example, if you curled the sample txt file from the course web site, type:

ls

and unix should respond with something like:

sample.txt

4. cd 〈path〉 changes the current directory to the 〈path〉 argument.

For example:

cd ..
pwd

should show that you’re in the Users directory:

/Users

and:

2

cd yourname
pwd

should show that you are back in your home directory:

/Users/yourname

5. mkdir creates a new subdirectory.

For example:

mkdir PS1
ls

should print:

sample.txt
PS1

6. open 〈path〉

edits an existing file (mac only!).

For example:

open sample.txt

(It chooses the editor based on the file extension: the part of the filename after ‘.’, if any.)

3.3 Unix commands with path patterns using regular expressions
Regular expressions make their way into some useful unix commands.

Many commands use regexp-like path patterns to match filenames as paths from the current
directory (‘*’ is repeated wildcard; ‘[a-z]’ is character range; ‘{.tex,.bib}’ is disjunction,
‘/’ delimits directories, and ‘..’ backs up a directory — e.g. ‘../*/[0-9]*{.h,.o}’ matches
files in siblings to the current directory that begin with a number, end with .h or .o):

7. ls 〈path-pattern〉

lists all files matching 〈path-pattern〉.

For example:

ls ../*

prints a list of the files in directory above (‘..’) the current directory.

8. mv 〈path-pattern〉 〈path〉

moves file(s) matching 〈path-pattern〉 to directory (or new file name) 〈path〉.

For example:

mv sample.txt myfile.txt

3

changes the name of ‘sample.txt’ to ‘myfile.txt’, and this:

mv myfile.txt sample.txt

changes it back, and this:

mv sample.txt PS1/sample.txt

moves ‘sample.txt’ into the ‘PS1’ directory without changing its name.

9. cp 〈path-pattern〉 〈path〉

copies file(s) matching 〈path-pattern〉 to directory (or new file name) 〈path〉

(same as mv, but preserves the old file).

For example:

cp sample.txt sample.txt.backup

10. rm 〈path-pattern〉

removes (i.e. deletes) file(s) matching 〈path-pattern〉.

For example:

rm *.backup

11. rmdir 〈path-pattern〉

removes (i.e. deletes) directory(-ies) matching 〈path-pattern〉.

Unix commands for reading files, also using path patterns:

12. cat 〈path-pattern〉

prints a big concatenation of the contents of all files matching 〈path-pattern〉.

13. head -n〈num〉 〈path-pattern〉

prints the first 〈num〉 lines of each file matching 〈path-pattern〉.

14. tail -n〈num〉 〈path-pattern〉

prints the last 〈num〉 lines of each file matching 〈path-pattern〉.

15. sed -n 〈num1〉,〈num2〉p 〈path-pattern〉

prints lines 〈num1〉 through 〈num2〉 of each file matching 〈path-pattern〉.

16. sort 〈path-pattern〉

prints a sorted list of all lines of all files matching 〈path-pattern〉.

4

3.4 Unix commands for text processing using regular expressions
These commands use regular expressions to match lines in text files, to print or substitute:

17. egrep ’〈reg-exp〉’ 〈path-pattern〉

prints lines in file(s) 〈path-pattern〉 that match 〈reg-exp〉.

18. egrep -o ’〈reg-exp〉’ 〈path-pattern〉

prints strings in file(s) 〈path-pattern〉 that match 〈reg-exp〉.

19. grep ’〈reg-exp〉’ 〈path-pattern〉

same as egrep, but weaker regexp support.

20. perl -pe ’s/〈reg-exp〉/〈string〉/g’ 〈path-pattern〉

prints contents of file(s) 〈path-pattern〉 with:

• every 〈reg-exp〉 replaced with 〈string〉, and

• any ‘\〈num〉’ in 〈string〉 replaced with contents of the 〈num〉th parens in 〈reg-exp〉

(the global search option g allows multiple matches per line – this can be omitted).

For example:

perl -pe ’s/semprini/CENSORED/g’ myfile.txt

prints version of myfile.txt with all occurrences of ‘semprini’ censored out, and:

perl -pe ’s/item ([0-9]+)/the \1th item/g’ myfile.txt

prints version of myfile.txt w. cardinal items (‘item 12’) as ordinals (‘the 12th item’).

21. sed ’s/〈reg-exp〉/〈string〉/g’ 〈path-pattern〉

works the same as ‘perl -pe’, but weaker regexp support.

3.5 Unix commands not for navigation, using no regular expressions
These commands don’t use any regexps, but are still useful:

22. uniq -c 〈path〉

given sorted lines in 〈path〉, prints each unique line preceded by number of occurrences.

23. echo 〈string〉

prints 〈string〉. This is useful for reporting progress in unix scripts.

For example:

echo ’Here is some text!’

echoes back:

5

Here is some text!

3.6 Chaining commands
Commands can be chained together by piping/redirecting input and output:

1. Commands cat, head, tail, sort, egrep, perl, uniq, echo, curl write output.

2. Commands head, tail, sort, egrep, perl, uniq read from piped/redirected input.

3. Commands writing output can redirect (or ‘pipe’) output to commands reading input
(using ‘|’ pipes and leaving off the path argument from commands following pipes):

cat file.txt | sort | uniq -c

4. Commands writing output can also redirect their output to files, using ‘>’:

echo ’Here is some text!’ > myfile.txt

(This is an easy way to make a text file.)

Practice:

In one line, print an alphabetized list of all capitalized words in some file ‘myfile.txt’

3.7 Makefiles
Chained commands can be generalized into ‘Makefiles,’ to automate projects/experiments:

Makefiles organize unix commands to:

• record how to obtain output/target files (‘results’) from input/source files (‘data’),

• generalize these as processes from file types to file types (e.g. ‘.’ extensions),

• figure out what’s out of date and needs re-computing, using process dependencies,

essentially an artificial-intelligence production system, it figures out how to make things for you!

Makefiles contain rules for making output/target files from input/source files, of the form:

〈target-path〉 : 〈list-of-source-paths〉
tab 〈chained-unix-command〉
tab 〈chained-unix-command〉

...

For example, if you create a file called ‘Makefile’ (e.g. using TextEdit or Notepad) containing:

samples.txt: sample.txt

tab cat sample.txt sample.txt > samples.txt

(and you create a file sample.txt at that same directory, containing whatever you want)
then you can create samples.txt by typing ‘make samples.txt’ in the terminal at that directory.

6

The target path may contain wildcard ‘%’ to match a substring and copy it in the source paths
(in which case the rule is called an ‘implicit rule’).
Files created like this are then deleted, unless ‘.PRECIOUS: 〈target-path〉’ precedes item.

The chained unix commands may contain the following variables (to allow ‘%’ paths):

1. $@ — the target path (with ‘%’ wildcard instantiated with a string)

For example:

samps-uniq%.txt: sample.txt

tab cat sample.txt sample.txt > $@

(here, make samps-uniqA.txt and make samps-uniqB.txt files are identical).

2. $ˆ — the list of source paths (with ‘%’ wildcard instantiated with a string)

For example:

%.combined.model: %.pcfg.model %.pos.model

tab cat $ˆ > $@

3. $< — the first source path (with ‘%’ wildcard instantiated with a string)

For example:

%.txt: %.html scripts/remove-html.pl

tab cat $< | perl scripts/remove-html.pl > $@

4. $* — the string instantiating ‘%’ in an implicit rule

For example:

%.wikipedia.html:

tab curl https://en.wikipedia.org/wiki/$* > $@

Practice:

Write a Makefile item to make a ‘%.capwords’ file, containing an alphabetical list of all capitalized
words in a source ‘%.txt’?

3.8 Advanced Makefile scripts (if there’s time)

The target, source, and commands may also contain user variables, defined prior to the item:

5. set user variable: 〈user-var〉 = 〈string〉

For example:

SWAMP = Frog Snail

6. invoke user variable: $(〈user-var〉)

7

For example:

Swamp: $(SWAMP)

tab cat $ˆ > $@

The chained unix commands may also contain macros:

(may also appear among the source paths if ‘.SECONDEXPANSION:’ precedes item,
in which case all dollar signs must be ‘escaped’ with an additional dollar sign: $$)

7. $(word 〈num〉, 〈string〉)

the 〈num〉-th word in the 〈string〉, delimited by spaces

For example:

%.txt: % scripts/remove-html.pl

tab cat $(word 1,$ˆ) | perl $(word 2,$ˆ) > $@

cats the first source (the html file) into the second source (the .pl script)

8. $(suffix 〈string〉)

the part of a string containing the last dot + everything after (‘extension’ of a filename)

9. $(basename 〈string〉)

the part of a string prior to the last dot (i.e. the part of a filename without the extension)

10. $(subst 〈string1〉, 〈string2〉, 〈string3〉)

a copy of 〈string3〉 with each instance of 〈string1〉 replaced with 〈string2〉

For example, suffix, basename and subst can define a general reproducible process:

%.parses: $$(basename %).sents parser $$(subst .,,$$(suffix %)).model

tab cat $(word 1,$ˆ) | $(word 2,$ˆ) $(word 3,$ˆ) > $@

so, given any test set (e.g. testset.sents), trained model (trainingset.model),

make testset.trainingset.parses

will produce a file of hypothesized parse trees that identifies the model and test set.

11. $(wildcard 〈path-pattern〉)

a list of every file in the current directory matching 〈path-pattern〉

For example:

WSJSECTS = $(wildcard Corpora/penn treebank 3/parsed/mrg/wsj/*)

8

generates a list of all the subdirectories in /Corpora/.../mrg/wsj

12. $(foreach 〈varname〉, 〈string1〉, 〈string2〉)

a list of copies of 〈string2〉, replacing ‘$(〈varname〉)’ with each word in 〈string1〉

For example:

WSJTR = 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
wsjTRAIN.linetrees: $(foreach sect,$(WSJTR),wsj$(sect).linetrees)

tab cat $ˆ > $@

concatenates files wsj02.linetrees, wsj03.linetrees, etc.

13. $(patsubst 〈%-pattern1〉, 〈%-pattern2〉, 〈string〉)

a copy of 〈string〉 with each instance of 〈%-pattern1〉 replaced with 〈%-pattern2〉

For example:

OUTPUTS = $(patsubst %.in,%.out,$(wildcard *.in))

14. $(shell 〈command〉) or, for short: ‘ 〈command〉 ‘

output (w/o newlines) of executing 〈command〉 at unix prompt in current directory

For example:

CFLAGS = $(shell cat user-cflags.txt)
CFLAGS = ‘cat user-cflags.txt‘

9

	Notation for directory structure
	Unix commands for basic navigation
	Unix commands with path patterns using regular expressions
	Unix commands for text processing using regular expressions
	Unix commands not for navigation, using no regular expressions
	Chaining commands
	Makefiles
	Advanced Makefile scripts (if there's time)

