Ling 5801: Lecture Notes 4
From Unix Scripts to Programs

Unlike simple chains of unix commands, programs are recursive (nested).

We will define programming languages using a grammar (as we later define natural languages).

Contents

Ul Programso e, 1
4.2 Recursive types within a prograrﬂ 2

i IONS . . . o e e e 2
4.4 Boolean eXpressiond oo e e 3
4 nditionald e e e 4
4 1ables . . . e e e 4
W7 Listd . . 5
U8 Toopd . . .o 6
4 Implementation of ‘pet lan PESA L 6

4.1 Programs
Programs are sequences of characters made up of recursive (nested) sub-types.

Some common types:
* (program)
this is a top-level type for an entire program (like a document)
* (stmt)
a statement is a sequence of characters that describes a desired action (like a sentence)
* (a-expr)
an expression is a string that describes a value (like a phrase), e.g. (num-expr) describes a number
Typed character sequences recursively decompose into sub-sequencess of other types.
For example, here is a simple subset of the programming language Python
(for now, interpret ‘—’ as ‘may consist of):
1. (program) — (stmt)
a program may consist of a single statement

2. (program) — (stmt) |NEWLINE| (program)

a program may consist of a sequence of delimited statements

1

(Python pays attention to indentation, so top-level statements must begin at left margin!)
We’ll also define a statement for printing to standard output (there will be more):
3. (stmt) — print ((a-expr))
a statement may be a print command followed by any type of argument expression
We’ll also define a type of expression for ‘strings’ of characters (there will be more):
4. (string-expr) — ' ([A-Za-z0-9.,!? \n]*) '
a string expression may consist of a bunch of characters between quotes
(\n is a new-line character in a string; like typing ‘carriage return’ or ‘enter”)
5. (string-expr) — (string-expr) + (string-expr)
a string expression may consist of two string expressions concatenated together
Now we can write a simple program:
(type ¢ " in unix Terminal window to enter interpreter, then type the program)

(you can also edit in TextEdit, say ’, then run using ")

this will print:

4.2 Recursive types within a program

The nested or ‘recursive’ types in a program can be drawn as a tree:

4.3 Numerical expressions
We can also print other things:
1. (num-expr) — ([0-9]+)

a number expression may consist of a bunch of numerals (denoted using regexp)

2. (num-expr) — (num-expr) + (num-expr)
a number expression may be an addition of two number expressions (result is the sum)
3. (num-expr) — (num-expr) — (num-expr)
4. (num-expr) — (num-expr) * (num-expr)
5. (num-expr) — (num-expr) / (num-expr)
same for other operators
6. (a-expr) — ((a-expr))
a number (or any other) expression may be surrounded by parentheses
7. (num-expr) — int ((string-expr))
a string can be converted into a number expression, e.g. for reading
And here are some things we can do with them:
8. (string-expr) — str ((num-expr))
a number can be converted into a string expression, e.g. for printing

Now we can use Python as a calculator:

will print:

Practice:

Draw the above program as a tree.

4.4 Boolean expressions

Logical inference is handled using Boolean expressions, which are True or False:
1. (bool-expr) — True
2. (bool-expr) — False
a Boolean expression may be a capitalized constant true/false value
3. (bool-expr) — (bool-expr) and (bool-expr)
a Boolean expression may be a conjunction of two Boolean exprs (true if both true)
4. (bool-expr) — (bool-expr) or (bool-expr)

a Boolean expression may be a disjunction of two Boolean exprs (true if either true)

5. (bool-expr) — not (bool-expr)
a Boolean expression may be a negation of another Boolean expr (true if subexpr false)
6. (bool-expr) — (num-expr) > (num-expr)
7. (bool-expr) — (num-expr) < (num-expr)
8. (bool-expr) — (a-expr) == (a-expr)
a Boolean expression may be a (greater than / less than / equality) test on number exprs
(NOTE: you must use double-equals here! single equals is something else!)

Now we can use Python as a math checker:

will print:

4.5 Conditionals

Programs behavior can depend on Boolean conditions:

1. (stmt) — if (bool-expr) : |[NEWLINE| (suite)

perform (suite) if (bool-expr) is true

2. (stmt) — 1if (bool-expr) : |[NEWLINE| (suite) |[NEWLINE| else : |[NEWLINE| (suite)

perform first (suite) if (bool-expr) is true, otherwise perform second (suite)

where a suite is an indented sub-program, defined in terms of modifications to the margin:

3. (suite) (program)

INDENT | : add spaces to old margin get new margin;

DEDENT | : subtract spaces to return to previous margin

(interpreter may require entering an empty line to show you’re done with the indented part)

For example:

will print:

4.6 Variables

In addition to printing, we can also store values in variables:
1. (stmt) — («-var) = (a-expr)
store (-expr) in a variable (memory location) named (a-var)
2. (a-expr) — («-var)
a number expression may be a number variable (evaluates to contents of variable)
3. (a-var) — ([A-Za-z_][A-Za-z_0-9]%)
a variable may consist of a bunch of letters or numbers

For example:

will print:

4.7 Lists

Variables can store lists of values (including lists of lists):
1. (a-list-expr) — []
2. (a-list-expr) — [(a-list-element-seq)]
3. (a-list-element-seq) — (a-expr)
4. (a-list-element-seq) — («a-expr) , (a-list-element-seq)
5. {(a-list-expr) — range ((num-expr), (num-expr))
lists may contain nothing / expressions / numbers from first (num-expr) to second (num-expr)
6. (a-list-expr) — (a-list-expr) + (a-list-expr)
lists can be combined by concatenation
And here are some things we can do with them:
7. {(a-var) — (a-list-var) [(num-expr)]
list elements can be indexed by number
8. (num-expr) — len ((a-list-expr))

a number expression can be the length of a list (a-list-expr)

9. (bool-expr) — (a-expr) in (a-list-expr)
a boolean can indicate true if (a-expr) is in («a-list-expr), false otherwise
10. (bool-expr) — (a-expr) not in (a-list-expr)
a boolean can indicate false if (a-expr) is in (a-list-expr), true otherwise

For example, these rules can recursively define a list of list of numbers:

will print:

Practice:

Write an expression that would output the ‘2 1” from list 2, above.

4.8 Loops

Programs behavior can repeat (depending on Boolean conditions):

l. (stmt) — while (bool-expr) : |[NEWLINE| (suite)

repeat (suite) as long as (bool-expr) is true

2. (stmt) — for (a-var) in (a-list-expr) : |NEWLINE| (suite)
do (suite) for each value in (a-list-expr), assigned to (c-var)

For example:

will print:

Practice:

Write a program to count to 100 by 3’s:

4.9 Implementation of ‘pet language’ FSA

Sample Python program implementing FSA:

(text after ‘4’ are treated as comments and ignored)

0=1[0, 1] # set of states (0=ok, l=hungry)

X=[0, 1] # set of observation values (O=burble, l=whiffle)

S=[True, False] # set of start states (start off fed: true=member, false=not)
F=[False, True] # set of final states (alert when hungry: true=member, false=not)

initialize model as list of lists of truth values (think of as a 3-D array)
M=[[[False,False], [False,False]],
[[False,False], [False,False]]]

M[O][0][0]=True # model: ’'ok’ state on ’"burble’ input goes to "ok’
M[O][1][1]=True # "ok’ state on 'whiffle’ input goes to ’hungry’
M[1]1[0][1]1=True # "hungry’ state on ’"burble’ input goes to ’"hungry’
Input=[0,1,0] # input sequence: burble whiffle burble

T=3 # input length

initialize table of values over time (a 2-D array)
V=[[False,False], [False,False], [False,False], [False,False]]

initialize first time step with initial state values
for g in Q:
V[0] [g]=S[q]

compute possible states g in V at each time step t based on possible
states gP at previous time step t-1 and allowable transitions in M
for t in range(1l,T+1):
for gP in Q:
for g in Q:
vit] gl = V[t][q] or (V[t-1][gP] and M[gP] [Input[t-1]]I[q])

1f possible to be in any final state at end, accept
for g in Q:
if (V[T][q] and F[q]):
print ("yes’)

Practice:

Step through the above code.

state
state
state

	Programs
	Recursive types within a program
	Numerical expressions
	Boolean expressions
	Conditionals
	Variables
	Lists
	Loops
	Implementation of `pet language' FSA

