
Ling 5801: Lecture Notes 6
Correctness, Complexity, and Generalization

Contents

6.1 Operations in an algorithm . 1

6.2 Complexity: how efficient is a program/algorithm? 2

6.3 Correctness: does a program do what it should? 3

6.1 Operations in an algorithm

The syntax rules used in every program defines a tree.

For example:

for x in X :

print x

has the following tree:

〈program〉

〈stmt〉

for 〈num-var〉

x

in 〈num-list-expr〉

〈num-list-var〉

X

: NEWLINE 〈suite〉

INDENT 〈program〉

〈stmt〉

print 〈num-expr〉

〈num-var〉

x

DEDENT

In this tree, each non-unary lexicalized rule counts as an operation:

• ‘non-unary’ rules have more than one child

• ‘lexicalized’ rules contain at least one terminal symbol

(other than NEWLINE, INDENT, or DEDENT)

(or count first keyword of each rule: ‘if’, ‘for’, ‘=’, ‘+’, ‘[’, ...)

Each operation takes some number of clock cycles to execute

1

Loops execute all operations under loop on each iteration!

(so time complexity of loops within loops grows exponentially with each loop)

6.2 Complexity: how efficient is a program/algorithm?

Time taken by an algorithm A can be measured in terms of complexity classes:

linear : A ∈ O(n)
quadratic : A ∈ O(n2)
cubic : A ∈ O(n3)
... : A ∈ O(g(n))

Definition of (worst-case) complexity classes:

A ∈ O(g(n)) if and only if

there are some parameters
︷ ︸︸ ︷

∃n0, c . ∀x1..xn
︸ ︷︷ ︸

for all inputs

.

after threshold length
︷ ︸︸ ︷

n>n0 → τ(A(x1..xn
)) ≤ c · g(n)

︸ ︷︷ ︸

number of operations is bounded

where:

• n0 is a point at which higher-order terms overtake lower-order terms in g(n)

• c is a constant time cost for the group of most deeply nested statements

• x1..xn
is an input sequence of observations of length n

• τ(A(x1..xn
)) is the time (in number of operations) required to execute A on x1..xn

In other words, an algorithm A is in class O(g(n)) if there is a length n0 beyond which all in-

put x1..xn
takes time within a constant c multiple of g(n).

For example:

length of input

n
u

m
b

er
o

f
o

p
er

at
io

n
s

f(n) = 10 + n2

c · g(n) = 2 · n2

n0

What counts as input? Our FSArec has input X (n is the number of characters defining X)

Other terms? if algo is flexible, they count too (separately): q chars defining S, F, M

2

For loops, complexity (in statements executed) exponential on number of nested loops.

For example, our FSA recognizer:

initialize table of possible states at time step 0 using start states

V = {}

for q in Q:

V[0,q] = S.get(q,False)

for each possible state qP in V at time t-1, for each qP,x,q in M, add q

for t in range(1,len(Input)):

for qP in Q:

for q in Q:

V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))

requires AFSA ∈ O(n · q2) because a statement is nested in one loop over X, two loops over Q

6.3 Correctness: does a program do what it should?

Correctness of an algorithm (abstraction of a program) depends on correctness of statements.

Most statements are straightforward.

But loops are more complex; usually proven by induction:

• define a loop invariant

• base case: demonstrate invariant satisfied at beginning of loop

• induction step: demonstrate invariant satisfied after each iteration if satisfied before

• demonstrate if invariant is satisfied at end, program is correct

For example, using our FSA implementation (prior to final state checking):

initialize table of possible states at time step 0 using start states

V = {}

for q in Q:

V[0,q] = S.get(q,False)

for each possible state qP in V at time t-1, for each qP,x,q in M, add q

for t in range(1,len(Input)):

for qP in Q:

for q in Q:

V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))

We can prove correctness of the inner loop over q in the last nesting group, given t and qP:

• loop invariant:

After each iteration, V shows states at or before q reachable from states at or before qP on

input up to time t.

• base case:

Before loop begins, V shows states reachable from sources before qP on input up to time t.

3

• induction step:

After each iteration, V shows states at or before q reachable from states at or before qP on

input up to time t if:

1. V shows states before q reachable from states at or before qP at time t before iter,

2. V shows qP was reachable on input up to t-1, and

3. M contains a transition from qP to q on the input at t.

• correctness:

After loop ends, because it looped over all states, V shows all reachable states from qP on

input up to time t.

We can now prove correctness of the next inner loop over qP, given t:

• loop invariant:

After each iteration, V shows states reachable from states at or before qP on input up to time

t.

• base case:

Before loop begins, V shows states reachable on input up to the previous time t-1.

• induction step:

After each iteration, V shows states reachable from states at or before qP on input up to time

t if

1. V shows states reachable from states before qP on input up to time t, and

2. the inner loop leaves V showing reachable states from qP on input up to time t.

• correctness:

After loop ends, because it looped over all states, V shows reachable states at or before time

t.

We can now prove correctness of the outer loop over t:

• loop invariant:

After each iteration, V shows reachable states at time t.

• base case:

Before loop begins, V contains only initial states.

• induction step:

After each iteration, V shows states reachable on input up to t if

1. V shows states reachable on input up to time t-1, and

2. the inner two loops leave V showing reachable states on input at time t.

4

• correctness:

After loop ends, V shows reachable states at end of input.

Then do same for other loops, proving correctness of assumptions in induction step.

5

	Operations in an algorithm
	Complexity: how efficient is a program/algorithm?
	Correctness: does a program do what it should?

