Ling 5801: Lecture Notes 9
From Recursive Types to Recursive Functions

Contents

9.1 Programming Functions in Python|
9.2 Local Variables: What Happens in Vegas|.
9.3 Recursive Functions|. oL
..
9.5 AUseful Tree Classl. o
0.6 Inheritancel

9.1 Programming Functions in Python

PDAs use a store to remember current states, process sub-strings, then come back.

Programs can do recursive processing in the same way (just more complex state).

This requires functions, useful for re-using similar operations in your programs.

For example, if you have the following program for recognizing ‘... is ...” assertions:

which reads sentences like the following and reports whether they are assertions:

then you may want to consolidate the ‘a’/‘an’ behavior for the parts before and after ‘is’.

This can be done by defining functions:
l. (stmt) — def (a-to-S-var) ((a-var)) : (suite)
define a function from expressions of type « to expressions of type /3
2. (stmt) — return ([-expr)

return an expressions of appropriate type at the end of the function suite

3. (B-expr) — (a-to-B-expr) ((a-expr))
apply a function to an argument of appropriate type

For example:

9.2 Local Variables: What Happens in Vegas

Note: for the most part, what happens in functions, stays in functions:

will print:

What happened to = in the function didn’t change the s outside the function.

9.3 Recursive Functions

Locality means a function can be used inside its own definition — called a recursive function:

accepts:

As it executes, this function does the same thing that a PDA does:
* remember the current state (and local variables, pushed onto a ‘program stack’)
* execute some sub-process (in this case, calling itself a on sub-list)

* return to the remembered program state (and local variables, popped off the stack)

Practice
Write a recursive function that concatenates together an n-length sequence of <’s,
observing that this is simply an = concatenated with an -length sequence of s’s.

9.4 Objects

Objects are types that have their own member variables and functions (‘methods’)

Objects can be defined using a ‘class’ statement, with functions defined in the suite:
1. (stmt) — class (7-type-id) : (suite)

(where (7-type-id) is a class name, like ")

Methods defined in the suite of a class take the class itself as an initial parameter:

2. (stmt) — def (r-to-f-var) ((7-var)) : (suite)
3. (stmt) — def (rxa-to-f-var) ((r-var) , («@-var)) : (suite)
Class instances can then be constructed using the class name:
4. (r-expr) — (r-type-id) ()
If you have a method __init__ with parameter (7-var), it will execute here.
5. (r-expr) — (7-type-id) ((«-var))
If you have a method __init__ with parameters (7-var) and (a-var), it will execute here.

For example, if you define a class:

and create an instance of it with this constructor:

then it will greet you:

We can add member variables to objects using . (e.g.):
6. (a-var) — (7-expr) . (a-var)

For example:

will print:

We can also refer to methods using ‘. (e.g.):
7. (B-expr) — (7-expr) . (7-to--var) ()
8. (f-expr) — (7-expr) . (7xa-to-f-var) ((a-expr))

For example:

will print:

Practice

Write a class that takes a string = in its constructor and has a method that
returns the string and a method that reports the number of letters in the string.

9.5 A Useful Tree Class

Sample class for reading/writing syntax trees:

class Tree:

obtain tree from string
def read(this, s):
this.ch = []
a tree can be just a terminal symbol (a leaf)
m = re.search ("™ ([~ ()]+) *(.*x)",s)
if m != None:
this.c = m.group(1l)
return m.group (2)
a tree can be an open paren, nonterminal symbol,
m = re.search ('’ «\(« ([~ ()1%) *x(.%)",s)
if m != None:
this.c = m.group(1l)

s = m.group (2)

while re.search(’” x\)’,s) == None:
t = Tree ()
s = t.read(s)

this.ch = this.ch + [t]
return re.search(’” *\) *(.x*)

return '’

obtain string from tree
def str(this):

if this.ch == []:
return this.c
s ="'"(" + this.c
for t in this.ch:
s =s + 7 " 4+ t.str()

return s +)’

Sample code to read/write syntax trees:

for each line in input
for line in sys.stdin:
for each tree in line

while line != ’'’:
t=Tree ()
line = t.read(line)

print (t.str())
Run this on a file containing a bracketed tree:
(S (NP the cat) (VP slept))
And it will print back the same tree, neatened up:

(S (NP the cat) (VP slept))

Here’s the tree:

subtrees,

close paren

9.6 Inheritance

It’s often useful to base a new class 7 on one or more existing classes (superclasses) o:

1. (stmt) — class (7-type-id) ((o-type-id)) : |[NEWLINE| (suite)

This allows your new class to inherit all the methods of the superclass

For example, define class ‘Model’ (in file ‘model.py’) to refine i/o behavior of a dictionary:

Now we can read a model with only a single command:

Run this on a file containing an FSA model:

And it will print back the same model, neatened up:

M
M

g0 a g0
g0 b gl =

=
o o

‘Derived’ classes (derived from superclasses) allow superclass methods to be overridden.

E.g. modify the default behavior of the dict so it initializes entries for queried keys:

define distribution to map value tuples to probabilities,

class Model (dict) :
populate with default values when queried on missing keys
def __missing__ (self,k):

self[k]=0.0
return self[k]

define get without promiscuity,

def get (self,k):

return dict.get (self,k,0.0)

init with model id

def _ _init_ (self,i):

self.id = 1
read model
def read(self,s):

m = re.search(’”

if m is not None:

v =
if len(v)==
selfv] =

write model

def write(self):

*"+self.id+’ +:

v

tuple (re.split (’

for v in sorted(self):

+’ ,m.group(1l)))
v[0]

float (m.group (2))

s = self.id

s =s + 7

if type(v) 1is tuple:

for £ in v:
s =s + /" " + £

else: s = s + ' " + v

print(s + 7 = ' + str(selflv]))
Sample run:
>>> import model
>>> m = model.Model ("M")
>>> m[’a’]=1 # adds ’a’ and sets value
>>> m # see?
{ra’: 1}
>>> m[’'b’] # adds 'b’ with default value
0.0
>>> m # see?
{ra’": 1, "b’: 0.0}
>>> m.get ('c’) # does not add ’c’
0.0
>>> m # see?
{ra’: 1, "b’": 0.0}

frequencies or scores

using ordinary dictionary method

	Programming Functions in Python
	Local Variables: What Happens in Vegas
	Recursive Functions
	Objects
	A Useful Tree Class
	Inheritance

