Ling 5801: Lecture Notes 11

From CFG Recognition to Probabilistic Parsing

Contents

11.1	Generalization of algorithms using semiring substitution
11.2	Generalized parsing
11.3	From recognition to parsing
	Weight calculation
11.5	Weighted Parsing
	FSA can also be generalized
11.7	Where do weights come from?
	A case against the dynamic programming parser as a human model

11.1 Generalization of algorithms using semiring substitution

Operations in an algorithm can be replaced, keeping the same structure.

For 'dynamic programming' algorithms, this can be done using semiring substitution:

A **semiring** is a tuple $\langle V, \oplus, \otimes, v_{\perp}, v_{\top} \rangle$ such that:

- V is a domain of values
- \oplus is a function $V \times V \rightarrow V$ such that:
 - ⊕ is **associative** (parens in sequences of operands don't matter):

$$v \oplus (v' \oplus v'') = (v \oplus v') \oplus v''$$

- ⊕ is **commutative** (order of operands doesn't matter):

$$v \oplus v' = v' \oplus v$$

- \otimes is a function $V \times V \rightarrow V$ such that:
 - \otimes is **associative** (parens in sequences of operands don't matter):

$$v \otimes (v' \otimes v'') = (v \otimes v') \otimes v''$$

- ⊗ **distributes** over \oplus (that is, \otimes with common operands can jump outside \oplus):

$$(v \otimes v') \oplus (v \otimes v'') = v \otimes (v' \oplus v''),$$

$$(v' \otimes v) \oplus (v'' \otimes v) = (v' \oplus v'') \otimes v$$

or in the case of limit operators (which we often use in dynamic programming):

$$\bigoplus_{v'} v \otimes v' = v \otimes \bigoplus_{v'} v'$$

e.g. products involving variables not bound by sums may move outside sum 'loop':

$$\sum_{p'} p \cdot p' = p \cdot \sum_{p'} p' \quad (5 \cdot 1 + 5 \cdot 2 = 5 \cdot (1 + 2) \text{ a.k.a. } \sum_{p' \in \{1,2\}} 5 \cdot p' = 5 \cdot \sum_{p' \in \{1,2\}} p')$$

or conjuncts may move outside disjunct 'loop':

$$\bigvee_{b'} b \wedge b' = b \wedge \bigvee_{b'} b'$$

- v_{\perp} is an **identity** element for \oplus and **annihilator** for \otimes (like 0 in reals):
 - $-v_{\perp} \in V$
 - $-v \oplus v_{\perp} = v \text{ and } v_{\perp} \oplus v = v$
 - $-v\otimes v_{\perp}=v_{\perp}$ and $v_{\perp}\otimes v=v_{\perp}$
- v_T is an **identity** element for \otimes (like 1 in reals):
 - $-v_{\mathsf{T}} \in V$
 - $v \otimes v_{\top} = v$ and $v_{\top} \otimes v = v$

A parser can generalize, using different semirings for operators ⊕,⊗ and initial values of ∨:

- boolean semiring ({True, False}, V, A, False, True): get original recognizer
- state sequences $\langle Q^*, |, \circ, q_{\perp}, \epsilon \rangle$: get set of possible trees/sequences
- **forward/inside** $\langle \mathbb{R}_0^{\infty}, +, \cdot, 0, 1 \rangle$: get probability
- tropical semiring $\langle \mathbb{R}^0_{-\infty} \cup \{-\infty\}, \min, +, -\infty, 0 \rangle$: get best tree/sequence prob
- state sequence × tropical: best tree/sequence and probability
- ...

11.2 Generalized parsing

Any time you want to calculate something of the form:

$$f(c, x_{i}..x_{j}) = \bigoplus_{\tau \text{ w. root } \langle c, i, j \rangle} \bigotimes_{\langle c', i', j' \rangle \in \tau} \begin{cases} \text{if } i' = j' : \begin{cases} \text{if } c' = x_{i'} : v_{\top} \\ \text{if } i' < j' : \bigoplus_{k', d', e'} R(c' \to d' e') \end{cases} \\ \text{if } i' < j' : \bigoplus_{k', d', e'} R(c' \to d' e') \end{cases}$$

you can apply generalized distributive axiom (pull meta-conjunct out of meta-disjunction):

$$f(c, x_i...x_j) = \begin{cases} \text{if } i = j : \begin{cases} \text{if } c = x_i : v_\top \\ \text{if } c \neq x_i : v_\bot \end{cases} \\ \text{if } i < j : \bigoplus_{k,d,e} R(c \to d \ e) \otimes \left(\bigoplus_{\tau' \text{ w. root } \langle d,i,k \rangle} \bigotimes_{\langle c',i',j' \rangle \in \tau'} \{...\} \otimes \left(\bigoplus_{\tau'' \text{ w. root } \langle e,k+1,j \rangle} \bigotimes_{\langle c'',i'',j'' \rangle \in \tau''} \{...\} \right) \end{cases}$$

and identify recursive instances of $f(c, x_i...x_i)$:

```
f(c, x_i..x_j) = \begin{cases} \text{if } i = j : \begin{cases} \text{if } c = x_i : v_{\top} \\ \text{if } c \neq x_i : v_{\perp} \end{cases} \\ \text{if } i < j : \bigoplus_{k,d,e} R(c \rightarrow d \ e) \otimes f(d, x_i..x_k) \otimes f(e, x_{k+1}..x_j) \end{cases}
```

then code, memoize, tabularize using dynamic programming, still preserving the generality:

```
def Parse(cS, X) :
  T = len(X)
  for j in range (0,T):
    for i in range(j,-1,-1):
      for c in C:
         if i == j :
           if ( c==X[i] ) : V[c,i,j] = v_T
           else : V[c,i,j] = v_{\perp}
         else :
           V[c,i,j] = v_{\perp}
           for k in range(i,j):
             for d in C:
               for e in C :
                  if (c,d,e) in R:
                   V[c,i,j] = V[c,i,j] \oplus \bigotimes (val(c,d,e), V[d,i,k],
                                               V[e, k+1, j])
  return V[cS, 0, T-1]
```

11.3 From recognition to parsing

Semiring basis lets us substitute the Boolean semiring of recognizer $\langle \{T, F\}, \vee, \wedge, F, T \rangle$ with union / Cartesian product: $\langle \text{set of trees}, \cup, \times, \emptyset, \{\langle \rangle \} \rangle$

Tree sets:

$$f(c, x_{i}..x_{j}) = \bigcup_{\substack{\tau \text{ w. root } \langle c, i, j \rangle \ \langle c', i', j' \rangle \in \tau}} \begin{cases} \text{if } i' = j' : \begin{cases} \text{if } c' = x_{i'} : \{\langle \rangle \} \\ \text{if } c' \neq x_{i'} : \emptyset \end{cases} \\ \text{if } i' < j' : \bigcup_{\substack{k', d', e' \text{ s.t. } \langle d', i', k' \rangle, \langle e', k'+1, j' \rangle \in \tau}} \end{cases}$$

can be computed with:

```
import sys
import re
import model

S = model.Model('S')
C = model.Model('C')
R = model.Model('R')

V = {}

def val(c,d,e):
```

```
return [c]
def prod(11,12,13):
    lo = []
    for el in ll :
        for e2 in 12 :
            for e3 in 13 :
                 lo = lo + [(e1, e2, e3)]
    return lo
def Parse(cS,X) :
    T = len(X)
    for j in range (0,T):
        for i in range(j,-1,-1):
             for c in C :
                 if i == j :
                     if (c==X[i]) : V[c,i,j] = [X[i]]
                                   : V[c, i, j] = []
                 else :
                     V[c,i,j] = []
                     for k in range(i,j):
                         for d in C :
                             for e in C:
                                 if (c,d,e) in R:
                                     V[c,i,j] = V[c,i,j] + prod(val(c,d,e),
                                                                  V[d,i,k],
                                                                  V[e, k+1, j])
    return V[cS, 0, T-1]
for line in sys.stdin:
    S.read(line)
    C.read(line)
    R.read(line)
print Parse('S', re.split(' +','the cat hit the toy off the mat'))
run on the CFG model:
S : S = 1
C : S = 1
C : VP = 1
C : NP = 1
C : PP = 1
C : the = 1
C : cat = 1
C : hit = 1
C : toy = 1
C : under = 1
C : mat = 1
R : S NP VP = 1
R : VP VP PP = 1
R : VP \text{ hit } NP = 1
```

```
R: PP off NP = 1
R: NP NP PP = 1
R: NP the cat = 1
R: NP the toy = 1
R: NP the mat = 1
```

gives output (indented by me to help you see what happened):

You can turn any recognizer into an analyzer/parser with this trick!

('real' parsers use probability weights to choose a single tree; but that's another semiring)

Correctness: mostly the same

loop invariant: each c, i, j computes set of trees with root c spanning $x_i...x_i$

Complexity: same (with assumptions)

no change to program structure (assuming prod implemented w. references, which this ain't)

Worked example: (blackboard)

11.4 Weight calculation

Define weights for trees based on (product of) weights for rules:

$$\mathsf{P}(x_{i}..x_{j} \mid c) = \sum_{\tau \text{ w. root } \langle c,i,j \rangle} \prod_{\langle c',i',j' \rangle \in \tau} \begin{cases} \text{if } i' = j' : \begin{cases} \text{if } c' = x_{i'} : 1.0 \\ \text{if } c' \neq x_{i'} : 0.0 \end{cases} \\ \text{if } i' < j' : \sum_{k',d',e'} R(c' \rightarrow d' \ e') \\ \\ \text{if } i' < j' : \sum_{k',d',e'} R(c' \rightarrow d' \ e') \end{cases}$$

can be computed with:

```
import sys
import re
import model

S = model.Model('S')
C = model.Model('C')
R = model.Model('R')

V = {}

def val(c,d,e):
    return R[c,d,e]

def Parse(cS,X) :
```

```
T = len(X)
    for j in range (0,T):
        for i in range(j,-1,-1):
             for c in C :
                 if i == j:
                     if (c==X[i]) : V[c,i,j] = 1.0
                     else
                                     : V[c,i,j] = 0.0
                 else :
                     V[c, i, j] = 0.0
                     for k in range(i,j):
                         for d in C:
                              for e in C :
                                  if (c,d,e) in R:
                                      V[c,i,j] = V[c,i,j] + (val(c,d,e) *
                                                               V[d,i,k] *
                                                               V[e, k+1, j])
    return V[cS, 0, T-1]
for line in sys.stdin:
    S.read(line)
    C.read(line)
    R.read(line)
print Parse('S', re.split(' +', 'the cat hit the toy off the mat'))
run on the weighted CFG model:
S : S = 1
C : S = 1
C : VP = 1
C : NP = 1
C : PP = 1
C : the = 1
C : cat = 1
C : hit = 1
C : toy = 1
C : under = 1
C : mat = 1
R : S NP VP = 1.0
R : VP VP PP = .5
R : VP \text{ hit } NP = .5
R : PP off NP = 1
R : NP NP PP = .25
R : NP the cat = .25
R : NP the toy = .25
R : NP the mat = .25
outputs the combined weight of the string, given these rule weights:
0.005859375
Worked example (span, category, yield, weight):
```

1-2 NP the cat: .25

```
4-5 NP the toy: .25

7-8 NP the mat: .25

3-5 VP hit the toy: .5 \cdot 1 \cdot .25 = .125

6-8 PP off the mat: 1 \cdot 1 \cdot .25 = .25

4-8 NP the toy off the mat: .25 \cdot .25 \cdot .25 = .015625

3-8 VP hit the toy off the mat: (.5 \cdot 1 \cdot .015625 = .0078125) + (.5 \cdot .125 \cdot .25 = .015625) = .0234375

1-8 S the cat hit the toy off the mat: 1 \cdot .25 \cdot .0234375 = .005859375
```

11.5 Weighted Parsing

Choose a single tree using weighted rules:

```
import sys
import re
import model
S = model.Model('S')
C = model.Model('C')
R = model.Model('R')
V = \{ \}
def val(c,d,e):
    return (R[c,d,e],c)
def max_argmax(pt1,pt2) :
    if pt1[0]>=pt2[0] : return pt1
    else
                      : return pt2
def prod_pair(pt1,pt2,pt3) :
    return ( pt1[0]*pt2[0]*pt3[0], (pt1[1],pt2[1],pt3[1]) )
def Parse(cS,X) :
    T = len(X)
    for j in range (0,T):
        for i in range(j,-1,-1):
            for c in C :
                if i == j :
                    if (c==X[i]) : V[c,i,j] = (1.0,X[i])
                    else : V[c,i,j] = (0.0,())
                else :
                    V[c,i,j] = (0.0,())
                    for k in range(i,j):
                         for d in C:
                             for e in C :
                                 if (c,d,e) in R:
                                     V[c,i,j] = \max_{argmax}(V[c,i,j],
                                                            prod_pair(val(c,d,e),
```

Worked example (blackboard)

11.6 FSA can also be generalized

 A_{FSA} can now be generalized:

```
# initialize table of possible states at each time step using start states V = \{\} for q in Q: V[0,q] = S.get(q,v_{\perp}) # for each possible state qP in V at time t, for each qP,x,q in M, add q for t in range(1,len(Input)): for qP in Q: for q in Q: V[t,q] = V.get((t,q),v_{\perp}) \oplus (V[t-1,qP] \otimes M.get((qP,Input[t-1],q),v_{\perp}))
```

11.7 Where do weights come from?

Weights are well defined as probabilities.

In this view, (human/machine) parsers estimate probability of speakers generating utterances.

11.8 A case against the dynamic programming parser as a human model

DP/'chart' parsers are simple and tractable, but cognitively implausible:

- 1. human language processing uses short-term working memory:
 - Just and Carpenter: memory load affects processing [Just and Carpenter, 1992]
- 2. short-term working memory is very limited:
 - Miller: 7 +/- 2 'chunks' [Miller, 1956]

- Cowan: 4 +/- 1 [Cowan, 2001]
- Lewis: 2 +/- 1 [Lewis, 1996]
- McElree and Dosher: 1, but continuous [McElree and Dosher, 2001]
- 3. short-term memory is short-term (no trees in memory):
 - Sachs: can't remember words between sentences [Sachs, 1967]
 - Jarvella: can't remember words within sentences [Jarvella, 1971]
- 4. reference interacts incrementally with processing
 - Tanenhaus et al.: cand-..., frog on ... (can't do bottom-up) [Tanenhaus et al., 1995]
- 5. don't need more than working memory anyway:
 - Schuler et al.: parse treebank using 3-4 chunks [Schuler et al., 2010]

Let's implement an incremental comprehension model...

References

- [Cowan, 2001] Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. *Behavioral and Brain Sciences*, 24:87–185.
- [Jarvella, 1971] Jarvella, R. J. (1971). Syntactic processing of connected speech. *Journal of Verbal Learning and Verbal Behavior*, 10(4):409–416.
- [Just and Carpenter, 1992] Just, M. A. and Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. *Psychological Review*, 99:122–149.
- [Lewis, 1996] Lewis, R. L. (1996). Interference in short-term memory: The magical number two (or three) in sentence processing. *The Journal of Psycholinguistic Research*, 25:93–115.
- [McElree and Dosher, 2001] McElree, B. and Dosher, B. A. (2001). The focus of attention across space and across time. *Behavioral and Brain Sciences*, 24:129–130.
- [Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, 63:81–97.
- [Sachs, 1967] Sachs, J. S. (1967). Recognition memory for syntactic and semantic aspects of connected discourse. *Perception and Psychophysics*, 2(9):437–442.
- [Schuler et al., 2010] Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-coverage incremental parsing using human-like memory constraints. *Computational Linguistics*, 36(1):1–30.
- [Tanenhaus et al., 1995] Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., and Sedivy, J. C. E. (1995). Integration of visual and linguistic information in spoken language comprehension. *Science*, 268:1632–1634.