Ling 5801: Lecture Notes 11
From CFG Recognition to Probabilistic Parsing

Contents
[I1.1 Generalization of algorithms using semiring substitution| 1
[11.2 Generalized parsing| 2
[11.3 From recognition toparsing|., 3
(11.4 Weight calculation| 5
[(11.5 Weighted Parsing| 7
[11.6 FSA can also be generalized| 8
[I1.7 Where do weights come from? 8
[I1.8 A case against the dynamic programming parser as a human model| 8

11.1 Generalization of algorithms using semiring substitution
Operations in an algorithm can be replaced, keeping the same structure.
For ‘dynamic programming’ algorithms, this can be done using semiring substitution:
A semiring is a tuple (V,®, ®, v, , v-) such that:
* Vis a domain of values
* @is afunction V X V — V such that:
— @ is associative (parens in sequences of operands don’t matter):
veo@Wev)=waev)eV’
— @ is commutative (order of operands doesn’t matter):
vey =vev
* ®is a function V X V — V such that:
— ® is associative (parens in sequences of operands don’t matter):
V(W RV)=@WeV)V’
- ® distributes over @ (that is, ® with common operands can jump outside ®):
V)W V)=v (H &Vv’),
Vevie(o) =0 ev)ev

or in the case of limit operators (which we often use in dynamic programming):

@v@v'zv@@v'
"

Vv

e.g. products involving variables not bound by sums may move outside sum ‘loop’:

(ak.a.

or conjuncts may move outside disjunct ‘loop’:

* v, is an identity element for @ and annihilator for ® (like O in reals):
-y, eV

- v@®v, =vandv, ®dv=v

- v®v, =v,andv, ®v=v,

* v; is an identity element for ® (like 1 in reals):
- v eV
—v®vr=vand vt Qv =1y

A parser can generalize, using different semirings for operators @,® and initial values of V:

* boolean semiring : get original recognizer
* state sequences : get set of possible trees/sequences

* forward/inside : get probability

* tropical semiring : get best tree/sequence prob

state sequence X tropical: best tree/sequence and probability

11.2 Generalized parsing

Any time you want to calculate something of the form:

ifi'=j: if ¢’ =xp vy
if#Exp vy

fle,xix)) = @ ® ifi’<j : @R(C' —d')

T W. root {c,i,j) {¢’,i’,]’ YeT
kde s.t. (dik) e k'+,] e

you can apply generalized distributive axiom (pull meta-conjunct out of meta-disjunction):

T ife=x;:vr
=/ ifc#x; v,

f(c, x;.x;) =
" ki< PDrec - de)®[

k,d,e

D ®{...)®[D ®

7 w. root {d,i,k)y (ci',j)et’ 77 w. root (e,k+1,j) (c"i",j"yet”

and identify recursive instances of f(c, x;..x;):

. if =X .

Flexix;) = ifc#tx; v,
e ifi<j: @R(c —de)®f(d, xi.x)Rf (e, Xir1..X})
k,d,e

then code, memoize, tabularize using dynamic programming, still preserving the generality:

def Parse (cS, X)
T = len (X)
for j in range(0,T)
for i in range(j,-1,-1)
for ¢ in C

if i ==
if (c==X[i]) : VI[c,1,3] = vt
else : Vic,1i,3] = vy
else
Vic,1i,3] = v,
for k in range (i, J)
for d in C

for e in C
if (c¢,d,e) in R :
Vic,i,3] = Vic,i,3] ® K (val(c,d, e),
vid,i, k],
Vie,k+1,731)
return V[cS,0,T-1]

11.3 From recognition to parsing

Semiring basis lets us substitute the Boolean semiring of recognizer ({T, F}, v, A, F, T) with union
/ Cartesian product: (set of trees, U, X, 0, {()})

Tree sets:

it =x 1 (O)
lfl =/ {ifc'ix,-/ :0

if i< UR(C’ —>de)

kde st (d,i"k)(e'k'+l,])eT

flexx) =
T w. root {c,i,j) (c’,i’,]’ et
can be computed with:

import sys
import re
import model

S = model.Model (’S’)
C = model.Model ('C’")
R = model.Model ('R")

v = {}

def val(c,d,e):

def

def

for

print

return [c]
prod(11,12,13)
lo = []
for el in 11
for e2 in 12
for e3 in 13

lo = lo + [(el,e2,e3)]
return lo
Parse (cS, X)
T = len (X)
for 3 in range(0,T)
for 1 in range(j,-1,-1)
for ¢ in C
if i == 3 :
if (c==XI[1i]) Vic,1i,3] = [X[i]]
else Vic,1i,3] = [1
else
Vic,i,3]1 = I[I
for k in range (i, j)
for d in C
for e in C
if (c,d,e) in R
Vic,i,3] = Vic, i, 3]

return V[cS,0,T-1]

line in sys.stdin:
S.read (line)
C.read(line)
R.read(line)

Parse ('S’ ,re.split (¥ +’/

run on the CFG model:

(0p]

[OHOHONOINONONONONS!

(@]

POV

S =1

VP 1
NP = 1
PP = 1
the =
cat =
hit

toy =
under = 1

e

mat = 1

S NP VP = 1
VP VP PP = 1
VP hit NP =

+ prod(val(c,d,e),
V[dlilk] 14
Vie,k+1,71)

,"the cat hit the toy off the mat’))

gives output (indented by me to help you see what happened):

You can turn any recognizer into an analyzer/parser with this trick!

(‘real’ parsers use probability weights to choose a single tree; but that’s another semiring)

Correctness: mostly the same

loop invariant: each c, i, j computes set of trees with root ¢ spanning x;..x;

Complexity: same (with assumptions)

no change to program structure (assuming prod implemented w. references, which this ain’t)

Worked example: (blackboard)

11.4 Weight calculation

Define weights for trees based on (product of) weights for rules:

i if¢’=x,:1.0
V=] 3.

T it ¢ #xy:0.0
P(xi.x;lc) = Z l_[<7 SR > d &

T W. root {c,i,j) {c’,i’,j’)eT mwr<j: (C - e)
kd'e' s.t. (d,ik)(ek'+,] yer

can be computed with:
import sys
import re
import model

S = model.Model (’S’")
C = model.Model (’'C")
R = model.Model ('R")

v = {}

def val(c,d,e):
return R[c,d, e]

def Parse (cS, X)

T = len (X)
for 3 in range(0,T)
for 1 in range(j,-1,-1)
for ¢ in C
if i == 3 :
if (c==X[1]) Vic,1i, 7] 1.0
else V[ic,i,3] = 0.0
else
Vic,i,3]1 = 0.0
for k in range (i, j)
for d in C
for e in C
if (c,d,e) in R
Vic,i,3]1 = Vic, i, 3]

return V[cS,0,T-1]

for line in sys.stdin:
S.read (line)
C.read(line)
R.read(line)

print Parse(’S’,re.split ('

run on the weighted CFG model:

S S =1

C S =1

C VP 1

C NP = 1

C PP = 1

C the = 1

C cat = 1

C hit = 1

C toy 1

C under = 1

C mat = 1

R S NP VP = 1.0

R VP VP PP .5

R VP hit NP = .5
R PP off NP = 1

R NP NP PP = .25
R NP the cat = .25
R NP the toy .25
R NP the mat = .25

outputs the combined weight of the string, given these rule weights:

0.005859375
Worked example (span, category, yield, weight):
1-2 NP the cat: .25

+

(val(c,d,e)
vid,i,k] =
Vie,k+1,71)

+’,’the cat hit the toy off the mat’))

*

4-5 NP the toy : .25

7-8 NP the mat : .25

3-5 VPhitthetoy:.5-1-.25=.125

6-8 PPoff themat: 1-1-.25=.25

4-8 NP the toy off the mat : .25 -.25-25 = .015625

3-8 VP hit the toy off the mat : (.5-1-.015625 = .0078125)+(.5-.125-.25 = .015625) = .0234375
1-8 S the cat hit the toy off the mat : 1-.25-.0234375 = .005859375

11.5 Weighted Parsing
Choose a single tree using weighted rules:

import sys
import re
import model

S = model.Model ("S’)
C = model.Model ('C")
R = model.Model ('R")

v = {}

def val(c,d,e):
return (R[c,d,e],c)

def max_argmax (ptl,pt2) :
if ptl[0]>=pt2[0] : return ptl
else : return pt2

def prod_pair (ptl,pt2,pt3)
return (ptl[0]*pt2[0]+pt3[0], (ptl([1l],pt2[1],pt3[1]))

def Parse (cS, X)
T = len(X)
for j in range (0, T)
for 1 in range(j,-1,-1)
for ¢ in C :
if 1 == 7§ :
if (c==X[i]) : VI[c,i,3] = (1.0,X[1i])
else : V[c,i,3j] = (0.0, ())
else :
Vic,i,3] = (0.0, ()
for k in range (i, j)
for d in C :
for e in C :
if (c¢,d,e) in R :
Vic,i,Jj] = max_argmax(V[c,i,Jjl,
prod_pair(val(c,d,e),

v[dlllk] 4
Vie,k+1,31))
return V[cS,0,T-1]

for line in sys.stdin:
S.read(line)
C.read(line)
R.read(line)

print Parse ('S’ ,re.split(’ +’,’the cat hit the toy off the mat’))

This prints most weighty tree for this string, and its weight:

Worked example (blackboard)

11.6 FSA can also be generalized

Agsa can now be generalized:

initialize table of possible states at each time step using start states

v = {}
for g in Q:
V[0,g] = S.get (g,v.)

for each possible state gP in V at time t, for each gP,x,g in M, add g
for t in range(l,len(Input)) :
for gP in Q:
for g in Q:
Vit,q] = V.get((t,q),vi) & (V[t-1,9P] ® M.get ((gP, Input[t-1],q),v.))

11.7 Where do weights come from?

Weights are well defined as probabilities.

In this view, (human/machine) parsers estimate probability of speakers generating utterances.

11.8 A case against the dynamic programming parser as a human model

DP/‘chart’ parsers are simple and tractable, but cognitively implausible:
1. human language processing uses short-term working memory:
* Just and Carpenter: memory load affects processing [Just and Carpenter, 1992]
2. short-term working memory is very limited:

e Miller: 7 +/- 2 ‘chunks’ [Miller, 1956

e Cowan: 4 +/- 1 [Cowan, 2001]

e Lewis: 2 +/- 1 [Lewis, 1996

¢ McElree and Dosher: 1, but continuous [McElree and Dosher, 2001]]
3. short-term memory is short-term (no trees in memory):

¢ Sachs: can’t remember words between sentences [Sachs, 1967

e Jarvella: can’t remember words within sentences [Jarvella, 1971]]
4. reference interacts incrementally with processing

e Tanenhaus et al.: cand-..., frog on ... (can’t do bottom-up) [[Tanenhaus et al., 1995]]
5. don’t need more than working memory anyway:

* Schuler et al.: parse treebank using 3-4 chunks [Schuler et al., 2010]]

Let’s implement an incremental comprehension model...

References

[Cowan, 2001] Cowan, N. (2001). The magical number 4 in short-term memory: A reconsidera-
tion of mental storage capacity. Behavioral and Brain Sciences, 24:87-185.

[Jarvella, 1971] Jarvella, R. J. (1971). Syntactic processing of connected speech. Journal of Verbal
Learning and Verbal Behavior, 10(4):409—-416.

[Just and Carpenter, 1992] Just, M. A. and Carpenter, P. A. (1992). A capacity theory of compre-
hension: Individual differences in working memory. Psychological Review, 99:122—149.

[Lewis, 1996] Lewis, R. L. (1996). Interference in short-term memory: The magical number two
(or three) in sentence processing. The Journal of Psycholinguistic Research, 25:93—115.

[McElree and Dosher, 2001] McElree, B. and Dosher, B. A. (2001). The focus of attention across
space and across time. Behavioral and Brain Sciences, 24:129-130.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63:81-97.

[Sachs, 1967] Sachs, J. S. (1967). Recognition memory for syntactic and semantic aspects of
connected discourse. Perception and Psychophysics, 2(9):437-442.

[Schuler et al., 2010] Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-
coverage incremental parsing using human-like memory constraints. Computational Linguis-
tics, 36(1):1-30.

[Tanenhaus et al., 1995] Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., and Sedivy,
J. C. E. (1995). Integration of visual and linguistic information in spoken language comprehen-
sion. Science, 268:1632—-1634.

	Generalization of algorithms using semiring substitution
	Generalized parsing
	From recognition to parsing
	Weight calculation
	Weighted Parsing
	FSA can also be generalized
	Where do weights come from?
	A case against the dynamic programming parser as a human model

