
Ling 5801: Lecture Notes 13
Probability Models

Contents
13.1 Full joint models and sparse data problems . 1
13.2 Marginals and conditionals . 2
13.3 Factored models . 3
13.4 Graphical representation (‘Bayes net’) . 4
13.5 Conditional probability model class . 4
13.6 Estimating θ from fully-specified (‘annotated’) data 6
13.7 Inducing θ from not-fully-specified (‘unannotated’) data 6
13.8 Independence assumptions . 7
13.9 Another example: speech components . 7
13.10Generative vs discriminative models . 9

13.1 Full joint models and sparse data problems
We can estimate probablities for new atomic events based on frequencies of these events in training

(assume a probability space 〈O, 2O,P〉 and frequency space 〈O, 2O,F〉 with O = X1×X2×· · ·×XV):

P(x1, x2, . . . , xV) def
=

F(x1, x2, . . . , xV)
F(O)

This is called a full joint distribution.

For examlpe, if we have a space of regions, words and sounds: O = Reg ×Wrd × Acou, where:

Reg = {ohio, phil, ...} (speaker region)
Wrd = {neck, knack, ...} (speaker’s intended word)
Acou = {[nεk], [næk], ...} (listener’s observed phone)

For example, Ohians never pronounce /ε/ as [æ], but Philadelphians often do:

PθPron(Reg= ohio,Wrd= knack,Acou= [næk])= .2
PθPron(Reg= ohio,Wrd= knack,Acou= [nεk]) = 0
PθPron(Reg= ohio,Wrd= neck, Acou= [næk])= 0 (never)
PθPron(Reg= ohio,Wrd= neck, Acou= [nεk]) = .3
PθPron(Reg= phil, Wrd= knack,Acou= [næk])= .2
PθPron(Reg= phil, Wrd= knack,Acou= [nεk]) = 0
PθPron(Reg= phil, Wrd= neck, Acou= [næk])= .2 (often)
PθPron(Reg= phil, Wrd= neck, Acou= [nεk]) = .1

We can write this as probability table, where rows sum to one:

1

PθPron(Reg,Wrd,Acou) =
ohio ohio ohio ohio phil phil phil phil
knack knack neck neck knack knack neck neck
[næk] [nεk] [næk] [nεk] [næk] [nεk] [næk] [nεk]
.2 0 0 .3 .2 0 .2 .1

Each probability in the model is called a parameter.

There’s one for each combination of values: in this case 2 · 2 · 2 = 8.

But if there are too many outcomes for the training data, full joints can make arbitrary predictions.

For example, consider this (junk/not-junk) email classifier algorithm:

1. Memorize a set of training emails (random variables are for first word, second word, etc.).

2. Compare each test email to the training set (estimate probability of atomic event).

(a) If you find an exact match, report the class from the matching training example.

(b) If you find no exact match, call it whatever is most common in training data (not-junk).

This will very rarely find an exact match, and end up classifying virtually nothing as junk.

This is called a sparse data problem. It shows the importance of generalizing from data.

13.2 Marginals and conditionals
One way to make better use of scarse data is to consolidate training instances across conditions.

We can do this by marginalizing or summing out certain variables that don’t matter as much.

1. We can define marginal distributions from the Kolmogorov axioms:

P(y, y′, . . .) =
∑

x,x′,···∈X×X′×...

P(x, x′, . . . , y, y′, . . .)

For example:

PθPron(Wrd=w,Acou= a) =
∑
r∈Reg

PθPron(Reg= r,Wrd=w,Acou= a)

PθPron(Wrd,Acou) =
knack knack neck neck
[næk] [nεk] [næk] [nεk]
.4 0 .2 .4

Another example:

PθPron(Acou= a) =
∑

r∈Reg,w∈Wrd

PθPron(Reg= r,Wrd=w,Acou= a)

PθPron(Acou) =
[næk] [nεk]
.6 .4

2

2. We can then define conditional distributions based on these marginals:

P(x, x′, . . . | y, y′, . . .) =
P(x, x′, . . . , y, y′, . . .)

P(y, y′, . . .)

For example:

PθPron(Wrd=w |Acou= a)=
PθPron(Wrd=w,Acou= a)

PθPron(Acou= a)

=

∑
r∈Reg PθPron(Reg= r,Wrd=w,Acou= a)∑

r∈Reg,w∈Wrd PθPron(Reg= r,Wrd=w,Acou= a)

Table has one row for each combination of conditioned-on variable values:

PθPron(Wrd |Acou) =
Acou knack neck
[næk] .667 .333
[nεk] 0 1

So, by our model, we can calculate that [næk] is probably from knack in the general case:

PθPron(Wrd= knack |Acou= [næk]) =
.2 + .2

.2 + 0 + .2 + .2
= .667

but if the speaker is from Philadelphia, the odds are even:

PθPron(Wrd= knack |Acou= [næk],Reg= phil) =
.2

.2 + .2
= .5

Practice

Write a Python program to calculate P(Wrd |Acou) in a dictionary WgivA[w,a] given a full joint
distribution P(Reg,Wrd,Acou) in a dictionary RWA[r,w,a].

13.3 Factored models
We can consolidate data by first factoring our model, using the definition of conditional probability

(you can validate this by cross-cancelling the numerators and denominators):

P(x1, x2, . . . , xV−1, xV) = P(x1) ·
P(x1, x2)

P(x1)︸ ︷︷ ︸ · P(x1, x2, x3)
P(x1, x2)︸ ︷︷ ︸ · · · P(x1, x2, . . . , xV−1, xV)

P(x1, x2, . . . , xV−1)︸ ︷︷ ︸
= P(x1) · P(x2 | x1) · P(x3 | x1, x2) · · ·P(xV | x1, x2, . . . , xV−1)

This is called a chain rule decomposition.

Now, in our example:

PθPron(Reg,Wrd,Acou)= PθPron (Reg)
1 ·

PθPron (Reg,Wrd)
PθPron (Reg) ·

PθPron (Reg,Wrd,Acou)
PθPron (Reg,Wrd)

= PθReg(Reg) · PθWrd (Wrd |Reg) · PθAcou(Acou |Reg,Wrd)

3

Now the number of parameters in any variable’s conditional probability distribution:

PθXi
(Xi | X1, ..., Xi−1)

is the product of the cardinalities of its modeled and conditioned-on variables:

|θXi | = |Xi| · |X1| · ... · |Xi−1|

In our example:

|θAcou| = |Acou| · |Reg| · |Wrd| = 2 · 2 · 2 = 8 parameters

So far this is no better than the full joint distribution. . . but that’s ok for now.

13.4 Graphical representation (‘Bayes net’)

Terms PθXi
(Xi | CXi) from chain can be represented graphically —

• circles for random variables Xi

• arrows for conditional dependencies (from conditioned-on CXi to modeled variables)

For example, probability space 〈R ×W × A, 2R×W×A,P〉 would be drawn:

R W

A

Graphical models are like sudoku: some values given, some unknown, values interdepend

In fact, they can be considered a generalization of sudoku puzzles!

13.5 Conditional probability model class
Extend ‘model.py’ to implement conditional model: dictionary of dictionary

(You may find this useful for certain problem set questions!)

import re
define distribution to map value tuples to probs (or frequencies or scores)
class Model(dict):

init with model id
def __init__(self,i=’’):

self.id = i
read model
def read(self,s):

m = re.search(’^ *’+self.id+’ +: +(.*?) += +(.*) *’,s)

4

if m is not None:
v = tuple(re.split(’ +’,m.group(1)))
if len(v)==1: v = v[0]
self[v] = float(m.group(2))

write model
def write(self):

for v in sorted(self):
s = self.id
s = s + ’ :’
if type(v) is tuple:

for f in v:
s = s + ’ ’ + f

else: s = s + ’ ’ + v
print(s + ’ = ’ + str(self[v]))

define model to map condition tuples to distributions
class CondModel(dict):

populate with default values when queried on missing keys
def __missing__(self,k):

self[k]=Model()
return self[k]

define get without promiscuity
def get(self,k):

return dict.get(self,k,Model())
init with model id
def __init__(self,i):

self.id = i
read model
def read(self,s):

m = re.search(’^ *’+self.id+’ +(.*?) +: +(.*?) += +(.*) *’,s)
if m is not None:

c = tuple(re.split(’ +’,m.group(1)))
if len(c)==1: c = c[0]
v = tuple(re.split(’ +’,m.group(2)))
if len(v)==1: v = v[0]
self[c][v] = float(m.group(3))

write model
def write(self):

for c in sorted(self):
for v in sorted(self[c]):

s = self.id
if type(c) is tuple:

for f in c:
s = s + ’ ’ + f

else: s = s + ’ ’ + c
s = s + ’ :’
if type(v) is tuple:

5

for f in v:
s = s + ’ ’ + f

else: s = s + ’ ’ + v
print(s + ’ = ’ + str(self[c][v]))

Example, e.g. type into a program file ‘myprog.py’:

import re
import sys
import model

read in params beginning with ’R’ (prior model: no value before colon)
read in params beginning with ’W’ (prior model: no value before colon)
read in params beginning with ’A’ (cond model: value before colon)
R = model.Model(’R’)
W = model.Model(’W’)
A = model.CondModel(’A’)
for line in sys.stdin:

R.read(line)
W.read(line)
A.read(line)

use a prior model
for r in R:
print (’prob of ’+r+’ is ’+str(R[r]))

use a conditional model
for r,w in A:

for a in A[r,w]:
print (’prob of ’+a+’ given ’+r+’ and ’+w+’ is ’+str(A[r,w][a]))

calc prob of W=’knack’ given R=’phil’ and A=’[naek]’
probAnyW = 0.0
for w in W:
probAnyW = probAnyW + R[’phil’] * W[w] * A[’phil’,w][’[naek]’]

print (R[’phil’] * W[’knack’] * A[’phil’,’knack’][’[naek]’] / probAnyW)

Reads files in the following format:

R : ohio = .5
R : phil = .5
W : knack = .4
W : neck = .6
A ohio knack : [naek] = 1.0
A ohio neck : [nek] = 1.0
A phil knack : [naek] = 1.0
A phil neck : [nek] = .333333
A phil neck : [naek] = .666667
...

then describes the information in the file and then prints the probability of knack:

6

0.499999875

13.6 Estimating θ from fully-specified (‘annotated’) data

Every θXi is a conditional probability table PθXi
(Xi | CXi).

Simply count instances of x1, ..., xi ∈ CXi×Xi and divide by count of x1, ..., xi−1 ∈ CXi .

This is called relative frequency estimation.

13.7 Inducing θ from not-fully-specified (‘unannotated’) data

You’ll study this in comp ling 2!

13.8 Independence assumptions
If we then think some variables don’t influence others much, we can remove them from conditions:

PθX (x | y, y′, . . . , z, z′, . . .) def
= P(x | y, y′, . . .)

These re-definitions are called independence assumptions.

For example, our model of pronunciation variation may become:

〈Reg ×Wrd × Acou, 2Reg×Wrd×Acou, P〉

PθReg(Reg) def
= P(Reg)

PθWrd (Wrd |Reg) def
= P(Wrd)

PθAcou(Acou |Reg,Wrd) def
= P(Acou |Reg,Wrd)

The joint probability is:

PθPron(Reg,Wrd,Acou) = PθReg(Reg) · PθWrd (Wrd |Reg) · PθAcou(Acou |Reg,Wrd)

PθPron(Reg,Wrd,Acou) def
= PθReg(Reg) · PθWrd (Wrd) · PθAcou(Acou |Reg,Wrd)

because of independence assumption: PθPron(Wrd |Reg) def
= PθPron(Wrd)

Graphically:

R W

A

7

13.9 Another example: speech components

Here’s an example of speech components: Phone, Voice, Back, Formant frequencies (binned):

〈P × V × B × F0 × F1 × F2, 2P×V×B×F0×F1×F2 , P〉

where P = {/i/, /u/},V = {+,−}, B = {+,−}, F0 = I
99
0 , F1 = I

99
0 , F2 = I

99
0

1. Chain rule decomposition (no independence assumptions):

PθSp(P,V, B, F0, F1, F2) =PθP(P) · PθV (V | P) · PθB(B | P,V)·
PθF0

(F0 | P,V, B) · PθF1
(F1 | P,V, B, F0) · PθF2

(F2 | P,V, B, F0, F1)

Graphed, it produces this evil hexagram:

P

V B

F0

F1

F2

Here |θF2 | = 100 · 2 · 2 · 2 · 100 · 100 = 8, 000, 000 parameters!

2. With independence assumptions:

PθP(P) def
= P(P)

PθV (V | P) def
= P(V | P)

PθB(B | P,V) def
= P(B | P)

PθF0
(F0 | P,V, B) def

= P(F0 |V)

PθF1
(F1 | P,V, B, F0) def

= P(F1 | B)

PθF2
(F2 | P,V, B, F0, F1) def

= P(F2 | B)

and joint distribution:

PθSp(P,V, B, F0, F1, F2) def
= PθP(P) · PθV (V | P) · PθB(B | P)·

PθF0
(F0 |V) · PθF1

(F1 | B) · PθF2
(F2 | B)

it looks less busy:

8

P

V B

F0

F1

F2

Now |θF2 | = 100 · 2 = 200 parameters!

Practice

1. Draw a model of pet communication given random variables for vocalization, hunger, loca-
tion, and tail being stepped on. The pet vocalizes when it’s hungry, or when its tail is stepped
on. Its tail gets stepped on only when it is in the kitchen.

2. Write the factored equation for P(Hunger,TailStep |Voc,Loc)

3. Write a program to do this calculation in modHTgivVL[v, l][h, t] given models
modL[l], modT[l][t], modH[h], modV[t, h][v]

13.10 Generative vs discriminative models
Random variables that are observed at test time are typically shaded in graphical representations.

These are called observations; the others are called hidden variables.

When these observed variables are conditioned on, the model is called discriminative:

X1

X2 X3

X4 X5

When observed variables are not conditioned on, the model is called generative:

9

X1

X2 X3

X4 X5

10

	Full joint models and sparse data problems
	Marginals and conditionals
	Factored models
	Graphical representation (`Bayes net')
	Conditional probability model class
	Estimating blue from fully-specified (`annotated') data
	Inducing blue from not-fully-specified (`unannotated') data
	Independence assumptions
	Another example: speech components
	Generative vs discriminative models

